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1 Introduction

The mechanics of our everyday world are accurately described by the laws of Newton's
classical mechanics, whereas on the much smaller scale of atoms and molecules such a
description can only be achieved in the framework of quantum mechanics. Of course
the physical laws on the small scale completely determine those on a larger one. So the
question that naturally arises is if and how classical mechanics can be regarded as a
certain scaling limit of quantum mechanics.
The answer to this question should also shed some light on the circumstances under
which classical mechanics provide a valid description of a system.

Let us now review the mathematical framework in that this question can be precisely
formulated and answered. We will formulate both theories in terms of their observables,
i.e. quantities of the system that can be measured by an observer.

In classical mechanics we can represent the state of a system by the current positions
x and momenta p of the particles in the system, which corresponds to a point in phase
space. The dynamics of this system are determined by the Hamiltonian total energy
function h, for example h = p2

2m
+ V (x) for particles of mass m moving in a potential V .

An observable a is represented by a real valued function on phase space and its equation
of motion is the Liouville equation

(1.1)
da

dt
= −{h, a} =

∂h

∂p

∂a

∂x
− ∂h

∂x

∂a

∂p

where { , } is called the Poisson bracket.
By contrast in quantum mechanics a state ψ is a vector in the Hilbert space of square
integrable functions on con�guration space X, that is the space of the particles' positions
only. Its evolution in time is determined by the Schrï¾1

2
dinger equation

(1.2) i~
∂ψ

∂t
= Hψ

where H is a self-adjoint linear operator on L2(X) called the Hamiltonian. For N
particles with equal masses moving in a potential V and Euclidean space we would have
H = − ~2

2m
∆+V (x) where ∆ is the Laplace operator on R3N . The observables of quantum

mechanics are the self-adjoint operators on L2(X). They obey the Heisenberg equation

(1.3)
dA

dt
=
i

~
[H,A] =

i

~
(HA− AH)
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1. Introduction

Observe that in these equations ~ �xes an energy scale. So the limit of high energies,
where one expects classical mechanics to be valid, is mathematically described by the
limit ~→ 0. This is called the semi-classical limit.
There are cases where the equations have this structure but the scaling-parameter is
actually not ~. For example it could be the mass-ratio of electrons versus nuclei as
in the Born-Oppenheimer approximation. In section 3.2 we present the example of
constraint quantum dynamics which somewhat generalises this approximation.
To avoid confusion we now introduce the semi-classical parameter ε and consider ε→ 0
as the semi-classical limit .

In order to compare these theories we need to �nd a correspondence between their
respective observables. Since there may be quantum observables that do not correspond
to any classical quantity this means we want to �nd a 'quantisation' map taking functions
on phase space to self-adjoint operators. This allows us to identify classical and quantum
systems when quantisation maps the respective Hamiltonians to one another. Given this
map and the identi�cation of the systems we can compare the dynamics on both levels.

The Egorov Theorem states that they are close in the sense that the di�erence of the
time evolutions of an observable is of order ε. To put this more precisely let Op() be
the quantisation map, then there is a constant CT such that for all t ∈ [0, T ]

(1.4) ‖Op(a)(t)−Op(a(t))‖L(L2(X)) ≤ CT ε

To prove this theorem of course one needs to specify the quantisation map as well as the
classes of observables and spaces for which it is supposed to hold. A simple proof for
the case X = Rd can be found in the book by Robert [Rob]. This result was extended
to compact Riemannian manifolds by Schubert [Sch] and to observables on an extended
phase space by Uribe and Paul [PU]. Here we will present a detailed proof in the setting
where the con�guration space X is a Riemannian manifold of bounded geometry (see 1.2
for a de�nition) and phase space is the cotangent bundle T ∗X. To get a quantisation
formula we will develop a (semi-classical) calculus of pseudodi�erential operators based
on the work of P�aum [P�1, P�2] and Safarov [Saf]. From this we will get an explicit
dependence of the error on the curvature, showing in particular that the approximation
is one order better if the curvature is zero.
An important �eld of application for the Egorov Theorem is quantum chaos, the study
of quantum systems whose corresponding classical systems have some 'chaotic' property
like ergodicity, mixing or unstable �xed points. A survey of this �eld can be found in
the article by Zelditch [Zel].
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1. Introduction

1.1 Notation

First of all let us introduce some notation: Let α = (α1, . . . , αd) ∈ Nd be a multiindex
and x = (x1, . . . , xd) ∈ Rd. We put

(1.5) |α| =
d∑
j=1

αj α! =
d∏
j=1

αj! xα =
d∏
j=1

x
αj
j

Let (X, g) be a Riemannian manifold of dimension d, p : TX → X its tangent and
π : T ∗X → X its cotangent bundle.
When ξ ∈ T ∗xX, v ∈ TxX we write v2 = |v|2 = g(v, v), ξ2 = g(ξ, ξ) and denote by
〈v, ξ〉 = ξ(v) the duality bracket.

We de�ne the L2 product of f, g ∈ C∞0 (X) by 〈f, g〉 =
∫
X
f(x)g(x)dx, where dx denotes

the canonical volume density.
The space L2(X) is the completion of C∞0 (X) under the norm ‖f‖L2 =

√
〈f, f〉.

The formal adjoint of a linear operator A is the operator A∗ such that 〈f, Ag〉 = 〈A∗f, g〉
for all f, g ∈ C∞0 (X) and the transpose AT is the operator that satis�es this equation for
all f, g ∈ C∞0 (X,R).
An unbounded linear operator on L2(X) is a tuple (A,D(A)) where the domain D(A)
is a linear subspace of L2(X) and A : D(A) → L2(X). Such an operator is called
symmetric if D(A) is dense and 〈f, Ag〉 = 〈Af, g〉 for all f, g ∈ D(A). If additionally
D(A∗) := {f ∈ L2(X) : ∃h ∀g ∈ D(A) : 〈f, Ag〉 = 〈h, g〉} = D(A) then A is called
self-adjoint.

The capital letter C will be used to denote various constants that may di�er even in a
single equation.

1.2 Normal Coordinates and Manifolds of Bounded

Geometry

On a Riemannian manifold we have a set of natural coordinates, called geodesic or
normal coordinates, that can be calculated from the metric. Here we will introduce
these coordinates and derive some identities for later use. In this context we also de�ne
manifolds of bounded geometry on which we have a natural way to de�ne functions with
globally bounded derivatives.

For every x ∈ X there exists a neighbourhood Ux such that for all y ∈ Ux there is a
unique geodesic of minimal length γx,y in Ux joining x and y. If we take γx,y(1) = y then
|γ̇x,y(0)| is the length of the geodesic. Identi�cation of y and zx(y) := γ̇x,y(0) gives rise
to a di�eomorphism expx : V ⊂ TxX → Ux, expx zx(y) = γx,y(1) = y.
Let ρ(x) be the supremum of all r > 0 for which expx : Bx(0, r) → Ux,r is a di�eomor-
phism and de�ne the injectivity radius of X as ρX = infx∈X ρ(x).
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1. Introduction

Clearly for r < ρX expx : Bx(0, r)→ Ux,r is a di�eomorphism for every x ∈ X.
Choosing an orthonormal basis (ej)j≤d of TxX gives us normal (also called canonical or
geodesic) coordinates zx on Ux via

(1.6) zkx(y) = g
(
exp−1

x y, ek
)

= g(γ̇x,y(0), ek)

Obviously zx(x) = 0 and ∂
∂zkx

∣∣
x

= ek in these coordinates so the coe�cients of the metric

tensor in x are gkl(x) = g(ek, el) = δkl.

The coordinate functions zkx of course depend on the choice of orthonormal basis (ej)j≤d,
but we can compare normal coordinte systems based at di�erent (su�ciently close)
points x, y by choosing such a basis in one of them (say x) and the basis induced by the
orthonormal frame (1.10) in y.

De�nition 1.1. A Riemannian manifold X is of bounded geometry if

1. ρX > 0

2. The transition functions between normal coordinate charts have bounded deriva-
tives to any order, i.e. if r < ρX and Uy,r ∩ Ux,r 6= ∅, then for every multiindex α
there is a constant Cα,r (independent of x and y) such that:

(1.7)

∣∣∣∣∂|α|zx∂zαy

∣∣∣∣ ≤ Cα,r

on Uy,r ∩ Ux,r.

This de�nition is discussed in more detail in [Shu]. Examples are compact manifolds or
covering manifolds thereof and Lie groups, which of course include Rd.
ρX > 0 implies that every geodesic can be extended inde�netely, so X is geodesically
complete and by the Hopf-Rinow theorem (see [Jos]) the closed and bounded setsK ⊂M
are compact.
Bounded geometry provides a notion of Ck-bounded functions

De�nition 1.2. Let X be of bounded geometry. f ∈ Ck(X) has bounded derivatives up
to order k, write f ∈ Ckb (X), if for every multiindex α with |α| ≤ k and r < ρX there is
a constant Cα,r for which

(1.8)

∣∣∣∣∂|α|∂zαx
f

∣∣∣∣ ≤ Cα,r

on every patch of normal coordinates zx : Ux,r → Rd.

Of course this de�nition can also be given without bounded geometry but it would not
be as natural since the derivatives ∂|α|

∂zαx

∣∣
x
f would have to decay in regions where the

derivatives of coordinate changes are large.
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1. Introduction

Normal coordinates also induce bundle coordinates (zx, ζx) on T
∗Ux by

(1.9) ξy =
∑
k

ζx,k(ξ)dz
k
x(y)

Now let Ψx,y(t) : TxX → Tγx,y(t)X and Φx,y(t) : T ∗xX → T ∗γx,y(t)X be parallel transport
along γx,y with respect to the Levi-Civita connection, where the latter is de�ned by
identi�cation of T ∗xX with TxX through g. g (Ψx,yv,Ψx,yw) and 〈γ̇x,y,Φx,yξ〉 are constant
along γx,y because the connection is metric and therefore Ψx,y and Φx,y are orthogonal
maps.
We de�ne an orthonormal frame E of TUx by

(1.10) ek(y) = Ψx,yek

and see that this gives us zkx(y) = g(γ̇x,y(1), ek(y)) = −zky (x) because γ̇x,y(1) = −γ̇y,x(0).

Let R be the curvature tensor. In local coordinates x = (x1, . . . , xd) with ∂k = ∂
∂xk

we
put

(1.11) g (R(∂k, ∂l)∂m, ∂n) = Rklmn =
∑
j

gjkR
j
lmn

and de�ne the Ricci- and scalar curvatures by

(1.12) Rickl(x) =
∑
m

Rm
kml(x) and κ(x) =

∑
k,l

gkl(x)Rkl(x)

We have the identities (see for example [dC, p. 93])

(1.13)

Rk
lmn +Rk

nlm +Rk
mnl = 0

Rklmn = Rmnkl

Rklmn = −Rklnm

Rickl = Riclk

If X is of bounded geometry the coe�ecients of the curvature and metric tensors and
their derivatives are bounded by global constants when written in normal coordinates
on patches Ux,r with r < ρX . To calculate some important geometric quantities we now
make use of the expansion of the metric in normal coordinates around x derived in the
book of Berline, Getzler and Vergne [BGV, p. 36].

(1.14) gkl(y) = δkl −
1

3

∑
m,n

Rkmln(x)zmx (y)znx (y) +O(|zx(y)|3)

First of all we compute the Christo�el symbols

(1.15) Γklm(x) =
1

2

∑
n

[
∂

∂zlx
gmn +

∂

∂zmx
gnl −

∂

∂znx
glm

]
gnk = 0
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1. Introduction

Then put G(y) =
√

det gkl(y) and see that the Laplace-Beltrami Operator takes the
form

(1.16) ∆f(x) = G−1(x)
∑
k,l

∂

∂zlx

[
G(x)glk(x)

∂

∂zkx
f(x)

]
=
∑
k

∂2

∂(zkx)2
f(x)

Next we introduce Θx(y) : TyX → TyX as the change of basis

(1.17)
∂

∂zkx

∣∣∣∣
y

=
d∑
j=1

Θj
kej(y)

We have (see [BGV]) |Θx(y)| := |det Θx(y)| = |det(Dzx expx)| = G(y) and thus write
|Θx(v)| = |det(Dv expx)|. Θx has the local expansion:

(1.18) Θk
l = δkl −

1

6

∑
m,n

Rk
mlnz

m
x (y)znx (y) +O(|zx|3)

from which we see that

(1.19)

∂2 |Θx|
∂zkx∂z

l
x

∣∣∣∣
x

=
∑
σ∈Sd

sgnσ

[∑
m 6=n

∂Θm
σ(m)

∂zkx

∣∣∣∣
x

∂Θn
σ(n)

∂zlx

∣∣∣∣
x︸ ︷︷ ︸

=0

∏
j 6=m,n

Θj
σ(j) +

∑
m

∂2Θm
σ(m)

∂zkx∂z
l
x

∣∣∣∣
x

∏
j 6=m

Θj
σ(j)︸ ︷︷ ︸

=δj
σ(j)

]

= −1

6

d∑
m=1

(Rm
lmk(x) +Rm

kml(x)) = −1

3
Rickl(x)

Now Θx(ỹ) is invertible for ỹ ∈ Ux so we can use the equation

(1.20)
∂

∂zky

∣∣∣∣
ỹ

=
∑
l,m

(Θy)
l
k

(
Θ−1
x

)m
l

∂

∂zmx

∣∣∣∣
ỹ

together with (1.18) to calculate the derivatives of coordinate changes

(1.21)

∂zjx
∂zky

∣∣∣∣
ỹ

=
∑
l,m

(Θy)
l
k

(
Θ−1
x

)m
l
δjm

= δjk +
1

6

∑
l,m

[
Rj
lkm(x)zlx(ỹ)zmx (ỹ)−Rj

lkm(y)zly(ỹ)zmy (ỹ)
]

+O(|zx + zy|3)

(1.22)
∂2zjx
∂zlyz

k
y

∣∣∣∣
ỹ

=
1

6

∑
m

[(
Rj
lkm(x) +Rj

mkl(x)
)
zmx (ỹ)−

(
Rj
lkm(y) +Rj

mkl(y)
)
zmy (ỹ)

]
+ O(|zx + zy|2)
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2 Pseudodi�erential Operators on

Manifolds

In this chapter we introduce a semi-classical (with parameter ε) pseudodi�erential cal-
culus on manifolds of bounded geometry as the main tool for the proof of the Egorov
Theorem. We will start by specifying classes of (complex valued) observables, called
symbols, for which we then de�ne a quantisation map and its inverse, the symbol map.
We will also establish the relationship between bounded symbols and bounded operators
that we need to get the estimate (1.4) in the operator norm. For this we will need global
bounds on symbols and their derivatives, so it will be convenient to restrict ourselves to
manifolds of bounded geometry.
In the following sections we study products of pseudodi�erential operators to be able to
express the Heisenberg equation on the level of symbols and introduce another quanti-
sation formula, Weyl quantisation, mapping real valued symbols to symmetric operators
and thus giving the desired relation for the physical observables.

We want results that do not depend on some choice of coordinates so we try to formulate
everything in a coordinate-free way and whenever we need to do a calculation in local
coordinates we use normal coordinates as these are intrinsically de�ned. Our results will
then only depend on the geodesics on X. They are consequently independent of the
representation in coordinates but depend of course on the metric.
Safarov [Saf] treats the more general case of manifolds with a linear connection and gets
similar results depending on that connection.

The calculus we get is a slightly modi�ed version of that described by P�aum in [P�2],
from where we have also taken most of the ideas for the proofs. The formulas for Weyl
quantisation and the Weyl symbol are due to Safarov [Saf] and similar formulas can be
found in [P�1].
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2. Pseudodifferential Operators on Manifolds

2.1 Spaces of Symbols and Asymptotic Expansions

From now on let (X, g) be a Riemannian manifold of bounded geometry and, for sim-
plicity, connected.

De�nition 2.1. A function a ∈ C∞(T ∗X) is called a symbol of order µ ∈ R if for
every r < ρX and multiindices α, β there are constants Cr,α,β such that for every normal
coordinate chart zy : Uy,r → Rd we have

(2.1)
∣∣∣∂|α|
∂zαy

∂|β|

∂ζβy
a(x, ξ)

∣∣∣ ≤ Cr,α,β(1 + |ξ|)µ−|β|

for every (x, ξ) ∈ T ∗Uy,r.

We denote the space of symbols of order µ by Sµ(T ∗X) (or just Sµ) and de�ne
S−∞(T ∗X) =

⋂
µ∈R S

µ(T ∗X) as well as S∞(T ∗X) =
⋃
µ∈R S

µ(T ∗X).

To check if a function a ∈ C∞(T ∗X) is a symbol of order µ it su�ces to check this in
normal coordinates centered at x = π(ξ) for every x ∈ X.

Proposition 2.2. Let a ∈ C∞(T ∗X). If for all multiindices α, β there are constants
Cα,β such that

(2.2)
∣∣∣∂|α|
∂zαx

∣∣∣∣
π(ξ)=x

∂|β|

∂ζβx
a(π(ξ), ξ)

∣∣∣ ≤ Cα,β(1 + |ξ|)µ−|β|

then a ∈ Sµ.

Proof. Let r < ρX and zy : Uy,r → Rd be a normal coordinate chart. For x ∈ Uy,r we
have ζx,k =

∑
l ζy,l

∂zly
∂zkx

, so

(2.3)

∂a(x, ξ)

∂ζy,k
=
∑
l

∂zky
∂zlx

∂a(x, ξ)

∂ζx,l

∂a(x, ξ)

∂zky
=
∑
l,m

∂zlx
∂zky

∂a(x, ξ)

∂zlx
+
∂a(x, ξ)

∂ζx,l

∂

∂zky

∂zmy
∂zlx

ζx,m

Observe that in the last term the growth coming from ζx is cancelled by the derivative
in the same variable. Now by the de�nition of bounded geometry 1.1 the derivatives of
coordinate changes are bounded by a constant that depends only on r and the order of
di�erentiation. This gives us the required estimate for �rst order derivatives and those
for higher orders follow inductively.

Example 2.3.

a) If a ∈ C∞b (X) then a ◦ π ∈ S0(T ∗X).

10



2. Pseudodifferential Operators on Manifolds

b) Let V ∈ C∞b (X), then a(x, ξ) = ξ2 + V (x) ∈ S2(T ∗X).

c) For a ∈ Sµ and b ∈ Sν we obviously have a+ b ∈ Smax(µ,ν) and ab ∈ Sµ+ν by Leibniz'
rule.

Later on we will be interested in expansions of symbols with respect to a parameter ε.
We say that a function f ∈ C∞(T ∗X) is of order εn in Sµ(X) and write f = Oµ(εn)
if there is ε0 > 0 such that ε−nf ∈ Sµ(X) (with constants independent of ε) for all
ε ∈ (0, ε0]. A symbol is Oµ(ε∞) if it is Oµ(εk) for every k.
Next we de�ne the notion of asymptotic expansion.

De�nition 2.4. A symbol a ∈ Sµ has the asymptotic expansion

(2.4) a ∼
∞∑
k=0

εkak

if ak ∈ Sµ for every k and

(2.5) a−
N∑
k=0

εkak = Oµ(εN+1)

It is a standard result (see the lecture notes by Evans and Zworski [EZ]) that an expan-
sion of this form always de�nes a symbol in Sµ that is unique up to Oµ(ε∞).

The symbols we have just de�ned have global bounds, i.e. the constants in (2.1) are
independent of the coordinate neighbourhood in which we take the estimate. Usually
this is only required locally, so our symbol classes are subclasses of those de�ned for
example in [Hör, P�2, Saf]. These classes coincide when X is compact.
We could also consider more general symbol classes as done in [P�2, Saf]. For example
they could take values in vector bundles over X or di�erentiation could have a modi�ed
in�uence on decay. Most of these generalisations do not change much in the theory but
may overburden the presentation, so we will stick to our simple case here.

2.2 Quantisation by Oscillatory Integrals

The basic idea of the quantisation map is that on R3N the kinetic energy operator
H0 := − ~2

2m
∆ has the 'Fourier-representation' p2

2m
which is just the classical kinetic

energy if we interpret p as momentum. More precisely if F is the Fourier transform with
inverse F−1 then for f ∈ D(H0)

(2.6) − ~2

2m
∆f = F−1

[
p2

2m
(Ff) (p)

]

11



2. Pseudodifferential Operators on Manifolds

First we de�ne the Fourier transform for symbols of order −∞, which are functions that
decrease rapidly in every �bre.

(2.7)

F : S−∞(TX)→ S−∞(T ∗X)

(Fa) (x, ξ) =

∫
TxX

e−i〈v,ξ〉/εa(x, v)dv

and

(2.8)

F−1 : S−∞(T ∗X)→ S−∞(TX)(
F−1a

)
(x, v) =

1

(2πε)d

∫
TxX

ei〈v,ξ〉/εa(x, ξ)dξ

Here dv and dξ denote the volume densities induced by g on TxX and T ∗xX, i.e. in-
tegration is with respect to the Lebesgue measure with lengths measured by g. Since
integration is only over TxX ∼= Rd all the standard results for the Fourier transform are
valid. In particular F−1 is the inverse of F . This is expressed by the formula

(2.9)
1

(2πε)d

∫
TxX

∫
T ∗xX

e−i〈v−w,ξ〉/εa(x, v)dvdξ = a(x,w)

Let a ∈ Sµ(X) with µ < −d. Then the integral

(2.10) Ia(x, v) =
1

(2πε)d

∫
T ∗xX

e−i〈v,ξ〉/εa(x, ξ)dξ

exists in the sense of Lebesgue for every v ∈ TxX.
In particular if y ∈ Vx for a normal coordinate neighbourhood of x we can put Ia(x, y) =
Ia(x, zx(y)) and interpret this as a (x-dependent) distribution on C∞0 (Vx) by

(2.11) Ia(x)f =

∫
Vx

Ia(x, y)f(y)dy

We generalise this idea to de�ne an operator associated to a symbol by using suitable
cuto�s.

De�nition 2.5. Let r < ρX and W ⊂ V ⊂ {(x, v) ∈ TX : |v| < r} be neighbourhoods
of the zero section.
Let ψ : TX → [0, 1] be a smooth cuto� function with suppψ ⊂ V and ψ|W ≡ 1. Then
the map (π, exp) : V → U ⊂ X×X is a di�eomorphism and expx(Vx) ⊂ Ux,r is a normal
coordinate neighbourhood of x. Let ψx(y) = ψ(x, zx(y)) ∈ C∞b (X ×X).

De�ne the phase function ϕ : X × T ∗X|U → C by ϕ(y, (x, ξ)) = 〈zx(y), ξ〉.

12



2. Pseudodifferential Operators on Manifolds

Then the quantisation of a ∈ Sµ(X) (with cuto� ψ) is a linear map C∞0 (X) → C∞(X)
given by

(2.12)

(Opψ (a) f)(x) =
1

(2πε)d

∫
X

∫
T ∗xX

ψx(y)e−iϕ(y,(x,ξ))/εa(x, ξ)f(y)dξdy

=
1

(2πε)d

∫
TxX

∫
T ∗xX

|Θx(v)|ψ(x, v)e−i〈v,ξ〉/εa(x, ξ)f(expx v)dξdv

This is clearly a linear map, but at �rst this de�nition only makes sense when µ < −d.

For better understanding let us examine this de�nition in the case X = Rd. The phase
function reads ϕ(y, (x, ξ)) = 〈y − x, ξ〉, where it is instructive to note that y − x is the
vector pointing straightly from x to y = expx(y − x), where we evaluate f .
Furthermnore |Θx(v)| ≡ 1 so the formula simpli�es to

(2.13) (Opψ (a) f)(x) =
1

(2πε)d

∫
Rd

∫
Rd
ψ(x, y − x)e−i〈y−x,ξ〉/εa(x, ξ)f(y)dξdy

This is just the usual quantisation formula for X = Rd apart from the introduction of
the cuto� function. We will see later that this is only a minor di�enerence.
Now we can view (2.12) as the natural geometric generalisation of the usual de�nition by
replacing vectors that 'point' somewhere by the tangent vectors to the geodesics ending in
that point (and restricting ourselves to neighbourhoods where this makes unambiguous
sense).

In order to extend the de�nition we take a ∈ Sµ(X) and approximate it by
an(x, ξ) = χ(ξ/n)a(x, ξ) ∈ S−∞(X), where χ is a smooth cuto� function with χ ≡ 1 on
Bπ(ξ)(0, 1),and make use of the following

Lemma 2.6. Let Ux,r be a normal coordinate neighbourhood of x with r < ρX , then
there is a �rst order di�erential operator L on Ux,r × T ∗Ux,r for which

i) Le−iϕ/ε = e−iϕ/ε

ii) (LT )k [a(x, ξ)f(y)] ∈ Sµ−k(T ∗Ux,r) for a ∈ Sµ, f ∈ C∞0 (Ux,r) and every y ∈ Ux,r

Proof. Take

(2.14) L =
1

1 + ξ2

d∑
j=1

(
1 + iεζx,j

∂

∂zjx

)
in normal coordinates around x, which clearly satis�es the �rst equation. Now writing
the integral in these coordinates and integrating by parts gives

(2.15) LTφ =
1

|Θx| (1 + ξ2)

d∑
j=1

(
1− iεζx,j

∂

∂zjx

)
(|Θx|φ)

then we have (LT )k(af) ∈ Sµ−k(T ∗Ux) for every y ∈ Ux,r because X is of bounded
geometry and example 2.3c).

13



2. Pseudodifferential Operators on Manifolds

Now put fψ(x, v) = ψ(x, v)f(expx v) and calculate

(2.16)

Opψ (an) =
1

(2πε)d

∫
X

∫
T ∗xX

ψx(y)an(x, ξ)f(y)e−iϕ(y,(x,ξ))/εdξdy

=
1

(2πε)d

∫
X

∫
T ∗xX

ψx(y)an(x, ξ)f(y)Lke−iϕ(y,(x,ξ))/εdξdy

=
1

(2πε)d

∫
X

∫
T ∗xX

χ(ξ/n)e−iϕ(y,(x,ξ))/ε(LT )k [ψx(y)a(x, ξ)f(y)] dξdy

which does not depend on k by equality to the �rst line.
Now

∣∣χ(ξ/n)(LT )k(afψ)
∣∣ ≤ ∣∣(LT )k(afψ)

∣∣ which is an integrable function when
µ− k < −d by lemma 2.6. So we can apply the dominated convergence theorem to �nd
that the limit for n→∞ of the integral equals

(2.17)
1

(2πε)d

∫
X

∫
T ∗xX

e−iϕ(y,(x,ξ))/ε(LT )k [ψx(y)a(x, ξ)f(y)] dξdy

and take this as the de�nition of Opψ (a) f for arbitrary µ.
Finally the bounds on the derivatives of a and the fact that f has compact support
ensure that Opψ (a) f ∈ C∞(X).

Now that we have shown that Ia(x)f makes sense we formally write Ia(x, v) for the
(distribution valued) ξ integral.
As direct consequences of this de�nition we can �rstly change the order of integration
by

(2.18)

∫
X

∫
T ∗xX

ψx(y)e−iϕ(y,(x,ξ))/εa(x, ξ)f(y)dξdy

:=

∫
X

∫
T ∗xX

e−iϕ(y,(x,ξ))/ε(LT )k [ψx(y)a(x, ξ)f(y)] dξdy

=

∫
T ∗xX

∫
X

e−iϕ(y,(x,ξ))/ε(LT )k [ψx(y)a(x, ξ)f(y)] dydξ

=

∫
T ∗xX

∫
X

ψx(y)e−iϕ(y,(x,ξ))/εa(x, ξ)f(y)dydξ

where the last step is integration by parts in the (absolutely convergent) inner integral.
The iterated integral exists in this order because f and ψ are smooth with compact
supports whereas a ∈ Sµ grows at most polinomially. Secondly we can 'integrate by
parts', i.e. if D =

∑d
j=1 bj∂ξj + cj with bj ∈ S0, cj ∈ S−1, then as distibutions:

(2.19)
1

(2πε)d

∫
T ∗xX

a(x, ξ)De−i〈v,ξ〉/εdξ =
1

(2πε)d

∫
T ∗xX

e−i〈v,ξ〉/εDTa(x, ξ)dξ

14



2. Pseudodifferential Operators on Manifolds

The quantisation of a symbol a ∈ Sµ is called a pseudodi�erential operator (of order µ),
we denote the space of these operators by Ψµ. This means that the elements of Ψµ are
those linear maps A : C∞0 (X) → C∞(X) for which there is a cuto� ψ and a ∈ Sµ with
A = Opψ (a).
Ψ−∞ is also called the space of smoothing operators because its elements map distri-
butions with compact support to smooth functions. A pseudodi�erential operator A is
smoothing if and only if it's Kernel is smooth with bounded derivatives of any order,
that is Af(x) =

∫
X
KA(x, y)f(y)dy with KA ∈ C∞b (X × X). We will prove this in

section 2.3.

Example 2.7.

a) For a ∈ C∞b (X) the operator Opψ (a ◦ π) is just pointwise multiplication by a.

b) The operator associated to a polynomial symbol that is locally of the form a =∑
|α|≤N ζ

α
x (cα ◦ π) ∈ SN for some functions cα ∈ C∞(Vx) can easily be calculated in

normal coordinates using ζαx e
−i〈v,ξ〉/ε = iε∂

|α|

∂vα
e−i〈v,ξ〉/ε and integration by parts:

(2.20)

(Opψ (a) f)(x) =
1

(2πε)d

∫
TxX

∫
T ∗xX

∑
|α|≤N

|Θx|ψ(x, v)ζαx e
−i〈v,ξ〉/εcα(x)f(expx v)dξdv

=
∑
|α|≤N

(−iε)|α|cα(x)F−1F
[
∂|α|

∂vα
(|Θx|ψ(x, v)f(expx v)

]
(x, 0)

=
∑
|α|≤N

(−iε)|α|cα(x)
∂|α|

∂zαx
(|Θx| f)

So quantisation of a polynomial symbol de�nes a di�erential operator. In particular
for a = ξ2 we have

(2.21) Op(a)f(x) = −ε2
∑
k

(
∂2

(∂zkx)2
− 1

3
Rickk(x)

)
f(x) = −ε2

(
∆− κ(x)

3

)
f(x)

In these examples the quantisation is independent of the cuto� ψ. We will now show
that this is true in general, at least up to an error of order ε∞.

Proposition 2.8. Let ψ and ψ̃ be two cuto� functions as in de�nition 2.5 and supported
in V , Ṽ . If a ∈ Sµ, then Opψ (a)−Opψ̃ (a) is O(ε∞) in Ψ−∞.

Proof. First notice that ψ−ψ̃ vanishes in a neighbourhood of {v = 0}, therefore we have

(2.22) (ψ − ψ̃)

(
d∑
j=1

iεvj

v2

∂

∂ζx,j

)
e−i〈v,ξ〉/ε = (ψ − ψ̃)εDe−i〈v,ξ〉/ε = (ψ − ψ̃)e−i〈v,ξ〉/ε

15
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By (2.19) we then have for every k ∈ N

(2.23)

(Opψ (a)−Opψ̃ (a))f

=
1

(2πε)d

∫
TxX

∫
T ∗xX

|Θx| (ψ − ψ̃)a(x, ξ)f(expxv)(εD)ke−i〈v,ξ〉/εdξdv

=
εk

(2πε)d

∫
TxX

∫
T ∗xX

|Θx| (ψ − ψ̃)e−i〈v,ξ〉/εf(expxv)(DT )ka(x, ξ)dξdv

Now obviously (DT )ka ∈ Sµ−k, so the ξ integral de�ning the kernel

(2.24) Ia(x, v) =
εk

(2πε)d
[ψ − ψ̃](x, v)

∫
T ∗xX

e−i〈v,ξ〉/ε(DT )ka(x, ξ)dξ

exists in the sense of Lebesgue and de�nes an n-times di�erentiable function of v if
µ + n − k < −d. The derivatives in x and v of this function are clearly bounded
independently of (x, v) because those of (DT )ka, ψ− ψ̃ and any coordinate changes are.
This shows that Ia(x, zx(y)) ∈ C∞b (X × X) and thus Opψ (a) − Opψ̃ (a) = O(ε∞) in
Ψ−∞.

Remark 2.9. The key point in the proof of the last proposition was that ψ− ψ̃ vanishes
near the critical point {v = ξ = 0} of the phase function ϕ. From this we can see
that the properties of Ia(x, v) are determined, up to an error of O(ε∞), by those of the
integrand in a neighbourhood of this point.
Let us also note that a function u(ξ) with the same property would have allowed for
introduction of D =

∑
iε
ξ2
ζj∂

j
v and given the same result.

We could even use an ε dependent cuto� function ψε as long as di�erentiation with
respekt to v does not loose a full order of ε, for example if εk∂kvjψ = O(

√
ε
k
). In the

following we will often use this argument without elaborating on the calculations.

As we have just proven that the dependence of the quantisation on ψ is negligible we will
write Opψ (a) = Op(a) from now on and sometimes adjust cuto� functions as needed.

There is some freedom to choose a di�erent quantisation map than the one de�ned
in (2.12) and get a slightly di�erent calculus. For example we could have written the y
integral in normal coordinates straight away and without the factor |Θx|. In this calculus
the quantisation of ξ2 is just −ε2∆. We will see that this di�erence is irrelevant for the
Egorov Theorem because it is of the same order as the error terms. We have chosen this
version because it behaves well under coordinate changes as we will see in section 2.4.

16



2. Pseudodifferential Operators on Manifolds

2.3 The Symbol Map

In this section we introduce the symbol of a pseudodi�erential operator as the inverse
(modulo ε∞) of the quantisation map. This is an improvement in comparison with
pseudodi�erential calculus de�ned in local coordinates, where in general only the leading
order σp ∈ Sµ/Sµ−1 of a symbol can be recovered from the pseudodi�erential operator.

De�nition 2.10. Let A ∈ Ψµ be a pseudodi�erential operator and ψ a cuto� function.
The ψ-cut symbol of A is the function on T ∗X de�ned by

(2.25) σψ,A(x, ξ) = A
[
|Θx(·)|−1 ψx(·)eiϕ(·,(x,ξ))/ε] (x)

where A acts on the variables denoted by (·).

Theorem 2.11. The map σψ : Ψ∞ → S∞ is the inverse of quantisation up to an error
which is asymptotically close to zero, that is

(2.26) σψ(Op(a)) = a+O−∞(ε∞) and Op(σψ,A) = A+O(ε∞) in Ψ−∞

Consequently σ is order-preserving and the dependence on ψ is asymptotically close to
zero.

Proof. We �rst prove that σ is the left inverse.
Let A = Opψ̃ (a) with a ∈ Sµ. Note that ψ′ = ψψ̃ is also a cuto� function and calculate

(2.27)

σψ,A(x, ξ) =
1

(2πε)d

∫
X

∫
T ∗xX

e−iϕ(y,(x,ζ))/εa(x, ζ)ψ′x(y) |Θx(y)|−1 eiϕ(y,(x,ξ))/εdζdy

=
1

(2πε)d

∫
TxX

∫
T ∗xX

a(x, ζ)ψ′(x, v)e−i〈v,ζ−ξ〉/εdζdv

= a(x, ξ)− 1

(2πε)d

∫
TxX

∫
T ∗xX

(1− ψ′(x, v))a(x, ζ)e−i〈v,ζ−ξ〉/εdζdv

where we have used the Fourier inversion formula (2.9). To complete the proof we need
to show that the second summand is O−∞(ε∞). Since (1 − ψ′) vanishes near v = 0
we can proceed as in the proof of proposition 2.8 and use the di�erential operator
D =

∑
j
iε
v2
vj∂ζj together with integration by parts to improve the decay of a. Now

check that because of
(
DT
)k
a = Oµ−k(εk) the function

(2.28) ̂(DT )k a(x, v) :=

∫
T ∗xX

(
DT
)k
a(x, ζ)e−i〈v,ζ〉/εdζ

is rapidly decreasing and (k − d− µ− 1)-times di�erentiable in v. Therefore

(2.29)
1

(2πε)d

∫
TxX

(1− ψ′(x, v)) ̂(DT )k a(x, v)ei〈v,ξ〉/ε
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2. Pseudodifferential Operators on Manifolds

is convergent and de�nes a smooth function b for which ε−l(1 + ξ2)lb(x, ξ) is bounded
when 2l < k − d− µ− 1, so b = O−∞(ε∞).
Now by our de�nition of Ψµ every element A ∈ Ψ∞ is of the form A = Opψ (a) for some
ψ and a ∈ S∞. So because σ is left inverse we have Op(σA) = Op(a + O−∞(ε∞)) =
A+O(ε∞) in Ψ−∞.

Example 2.12.

a) We have ∂2|Θx(·)|−1

∂(zkx)2
= −∂2|Θx(·)|

∂(zkx)2
because ∂|Θx(·)|

∂zkx
= 0, so we can calculate the symbol

of the Laplace-Beltrami operator:

(2.30) σψ,ε2∆(x, ξ) = ε2
∑
k

∂2

∂(zkx)2

[
|Θx(·)|−1 ψx(·)eiϕ(·,(x,ξ))/ε] = −ξ2 +

ε2

3
κ(x)

from which we see that σψ(Op(ξ2)) = ξ2 independently of ψ.

b) Let A be a vector �eld, Ay =
∑

k g
k(y) ∂

∂zkx
with gk ∈ C∞(Ux,r) in normal coordinates

centered at x. Let A be the operator given by: Af = iεdf(A). The symbol of A is

(2.31)

σψ,A(x, ξ) = iε
∑
k

gk(x)
∂

∂zkx

[
|Θx(·)|−1 ψx(·)eiϕ(·,(x,ξ))/ε]

= −
∑
k

gk(x)ζx,k(ξ) = −〈Ax, ξ〉

Lemma 2.13. An operator A : C∞0 (X) → C∞(X) is an element of Ψ−∞ if and only if
Af(x) =

∫
X
KA(x, y)f(y)dy for some KA ∈ C∞b (X ×X).

Proof. First let A = Opψ (a) with a ∈ S−∞. Then

(2.32) KA(x, y) =
1

(2πε)d

∫
T ∗xX

ψx(y)e−iϕ(y,(x,ξ))/εa(x, ξ)dξ

is smooth because a is rapidly decreasing and the bounds on the derivatives can easily
be calculated using those for the derivatives of a, ψx(y) and changes between normal
coordinate charts.

Now let KA ∈ C∞b (X ×X). We have

(2.33) σA(x, ξ) =

∫
TxX

KA(x, expx v)ψ(x, v)ei〈v,ξ〉/εdv

Because ψ(x, v) has compact support in Bx(0, r) we have the estimate

(2.34) |σA(x, ξ)| ≤ ‖KA‖∞ volBx(0, r)

and similar estimates for the derivatives.
Furthermore we can use ζαx e

−i〈v,ξ〉/ε = iε∂
|α|

∂vα
e−i〈v,ξ〉/ε together with integration by parts

to see that

(2.35)

∣∣∣∣(1 + ξ2)k
∂|α|

∂zαx

∂|β|

∂ζβx
σA(x, ξ)

∣∣∣∣ ≤ Ck,α,β

for every k, α, β, so σA ∈ S−∞.
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2.4 Weyl-Quantisation

In this section we will introduce Weyl quantisation as a tool which directly relates the
observables of classical and quantum mechanics, that are real functions on phase space
and self-adjoint operators respectively.
We also recover the main results of section 2.2 for this quantisation by giving a formula
expressing one quantisation in terms of the other.

De�nition 2.14. Let γ(t, y) = expx(tzx(y)) and Φx,y(t) : T ∗xX → T ∗γ(t,y)X be parallel
transport along γ. De�ne the Weyl quantisation of a ∈ Sµ by

(2.36)

(OpW (a) f)(x) :=
1

(2πε)d

∫
X

∫
T ∗xX

ψx(y)e−iϕ(y,(x,ξ))/εa
(
γ(1

2
, y),Φx,y(

1
2
)ξ
)
f(y)dξdy

=
1

(2πε)d

∫
TxX

∫
T ∗xX

|Θx| e−i〈v,ξ〉/εa
(
expx(

v
2
),Φx,y(

1
2
)ξ
)
fψ(x, v)dξdv

Proposition 2.15. Let a ∈ Sµ. There is σA ∈ Sµ such that OpW (a) = Op(σA) and
vice versa. We call a the Weyl symbol of A = Op(σA) and write a = σWA .

Proof. Use Taylor's formula in the normal coordinates around x to see that

(2.37) a (γ(t, y),Φx,y(t)ξ) =
∑
|α|≤N

t|α|

α!
zx(y)α

d|α|

dzαx

∣∣∣∣
x=y

a (y,Φx,yξ) + rN+1

with the remainder

(2.38) rN+1 =
tN+1

(N + 1)!

∑
|α|=N+1

zx(y)α
∫ 1

0

d|α|

dzαx

∣∣∣∣
y=γ(τ)

a (y,Φx,yξ) dτ

Next, substitute this expansion for a in (2.36) and use

(2.39) zx(y)αe−i〈zx(y),ξ〉/ε = (iε)|α|∂αξ e
−i〈zx(y),ξ〉/ε

together with integration by parts to get

(2.40) σA(x, ξ) =
∑
|α|≤N

1

α!

(
−iε
2

)|α|
∂|α|

∂ζαx

d|α|

dzαx

∣∣∣∣
y=x

a (y,Φx,yξ) + rN+1

with rN+1 = Oµ−N−1
(
εN+1

)
, so b ∈ Sµ is obvious.

In the other direction just do the same calculation in normal coordinates around γ(1
2
)

and with expγ(0.5)

(
−1

2
γ̇
(

1
2

))
= x we get

(2.41) σWA (x, ξ) =
∑
|α|≤N

1

α!

(
iε

2

)|α|
∂|α|

∂ζαx

d|α|

dzαx

∣∣∣∣
y=x

σA (y,Φx,yξ) + rN+1
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Example 2.16.

a) The function ξ2 = g(ξ, ξ) is invariant under parallel transport along γ, so we have

σW
(
−ε2∆ + ε2

3
κ(x)

)
= σ(Op(ξ2)) = ξ2.

b) Let A be the operator Af = iεdf(A) of example 2.12b), then we have

(2.42)

σWA (x, ξ) = −〈Ax, ξ〉−
iε

2

∑
j,k

∂

∂ζx,k

∂

∂zkx

∣∣∣∣
y=x

gj(y)ζx,j(Φx,yξ) = −〈Ax, ξ〉−
iε

2
div(A)

since ∂
∂zkx

∣∣
y=x

(Φx,y)
l
m = Γlkm(x) = 0.

c) From the previous example we can see that

(2.43) OpW (〈Ax, ξ〉) f = −Af − iε

2
div(A)f = −iε

2
(d[A(f)] + df(A))

We get the results 2.8 and 2.26 as corollaries of Proposition 2.15

Corollary 2.17. The dependence of OpW (a) on ψ is O (ε∞) in Ψ−∞.

Corollary 2.18. If a ∈ S0 then OpW (a) is a bounded operator on L2(X).

Theorem 2.19. Let a ∈ Sµ, then OpW (a)∗ = OpW (a) up to an error of O (ε∞) in
Ψ−∞ coming from a change of cuto�.

Proof. In the proof we make use of the following properties of geodesics:

(2.44) γ(1
2
) = expx

(zx(y)

2

)
= expy

(
− γ̇(1)

2

)
= expy

(zy(x)

2

)

(2.45) Φx,y

(
1
2

)
= Φy,x

(
1
2

)
Φx,y (1)

Now let f, g ∈ C∞0 (X). Keeping in mind the formulas above we change variables with
Φx,y : T ∗xX → T ∗yX, ξ → Φx,yξ := η (remember that Φ is orthogonal, so it's determinant
has absolute value 1).

(2.46)

〈
g,OpW (a) f

〉
=

∫
X

g(x)OpW (a) f(x)dx

=

∫
X

∫
X

∫
T ∗yX

ψx(y)a
(
γ(1

2
),Φy,x(

1
2
)η
)
e−i〈zx(y),η〉/εg(x)f(y)dηdydx

=

∫
X

∫
X

∫
T ∗yX

f(y)ψx(y)a
(
γ(1

2
),Φy,x(

1
2
)η
)
e−i〈zy(x),η〉/εg(x)dηdxdy

=
〈
OpW (a) g, f

〉
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where we have used zx(y) = −zy(x) and the last equality holds if ψ(x, zx(y)) behaves
like an appropriate cuto� function ψ̃(y, w) at y. To get a ψ with this property just let
suppψx ⊂ Ux,ρX/3, which is a normal coordinate neighbourhood for every y ∈ Ux,ρX/3 ⊂
Uy,2ρX/3. So if we put w = exp−1

y (x) ∈ By(0, 2ρX/3) ⊂ TyX the function ψ̃(y, w) =
ψ(x, zx(y)) has the required properties.

In this calculation we can see the bene�t of de�ning quantisation in the way we have,
with the functional determinant Θ in the integral over TxX. However this is not the only
way of de�ning a Weyl-quantisation such that this theorem holds, a slightly di�erent
version can be found in the paper by P�aum [P�1].

Remark 2.20. The theorem just proved together with theorem 2.26 shows that if a ∈ S0

is real, then OpW (a) is formally self-adjoint in the sense that OpW (a)∗ = OpW (a)
in Ψ∞/Ψ−∞. For symbols whose quantisations are unbounded the question of self-
adjointness depends on the domains of A = OpW (a) and A∗ and is far more complicated.
Here we have only shown that A with domain C∞0 (X) (we will see in section 2.5 that
this is really a domain for A if we choose ψ right) is symmetric. In the case X = Rd and
with some additional conditions on a Robert [Rob, chap. 3] proves that A with domain
S(Rd) has a unique self-adjoint extension.

2.5 Products of Pseudodi�erential Operators and

their Symbols

To prove the Egorov Theorem we will need an expression for the symbol of the com-
mutator [A,B]. For this we need to understand the meaning of the operator prod-
uct on the level of symbols, i.e. we want to �nd a composition rule '#' such that
Op(a#b) = Op(a)Op(b).
Now �rst of all a pseudodi�erential operator is a map C∞0 (X)→ C∞(X) so the product
may not even be well de�ned. If we look at the quantisation formulas (2.12) and (2.36)
we can observe that if for some x ∈ X we have f |Ux,r ≡ 0 then the integrands are always

zero, so we have Op(a)f(x) = OpW (a) f(x) = 0 for every a ∈ S∞ if dist(x, suppf) > r.
Because the support of f is compact it must be bounded, i.e. if we take x ∈ X then
the function dist(x, y) is bounded by a constant Cx on suppf . Therefore for y in the
support of Op(a)f or OpW (a) f we have dist(x, y) ≤ Cx + r, so these supports are also
compact because X is of bounded geometry. Thus the product is well de�ned. Let us
now consider the symbol of this product:

(2.47)
σAB(x, ξ) =

[
AB

(
|Θx(·)|−1 ψx(·)eiϕ(·,(x,ξ))/ε)] (x)

=
[
A
(
|Θx|−1 ψxe

iϕ(·,(x,ξ))/εσextB (·, (x, ξ))
)]

(x) +O−∞(ε∞)
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where

(2.48) σextB (y, (x, ξ)) = ψx(y) |Θx(y)| e−iϕ(y,(x,ξ))/ε
[
B
(
|Θx|−1 ψxe

iϕ(·,(x,ξ))/ε)] (y)

since 1− ψx(·) vanishes near the diagonal.

Lemma 2.21. Let a ∈ Sµ and A = Op(a). Then for any f ∈ C∞b the symbol

(2.49) σA,f (x, ξ) =
[
A
(
|Θx(·)|−1 ψx(·)eiϕ(·,(x,ξ))/εf(·)

)]
(x)

has the asymptotic expansion

(2.50) σA,f (x, ξ) ∼
∑
α∈Nd

(−iε)|α|

α!

[
∂|α|

∂ζαx

∣∣∣∣
ξ

a

][
∂|α|

∂zαx

∣∣∣∣
x

f

]

Proof. Using Taylor's formula and integrating by parts we get

(2.51)

σA,f (x, ξ) =
1

(2πε)d

∫
TxX

∫
T ∗xX

ψ(x, v)ei〈v,ξ−ζ〉/εa(x, ζ)f(expx v)dζdv

=
1

(2πε)d

∫
T ∗xX

∫
TxX

ψ(x, v)e−i〈v,ζ〉/εa(x, ξ + ζ)f(expx v)dvdζ

=
1

(2πε)d

∑
|α|≤N

1

α!

∫
T ∗xX

∫
TxX

ψ(x, v)f(expx v)e−i〈v,ζ〉/εζα

[
∂|α|

∂ζαx

∣∣∣∣
ξ

a

]
dvdζ + rN

=
1

(2πε)d

∑
|α|≤N

1

α!

∫
T ∗xX

∫
TxX

fψ(x, v)(iε)|α|
∂|α|

∂vα
e−i〈v,ζ〉/ε

[
∂|α|

∂ζαx

∣∣∣∣
ξ

a

]
dvdζ + rN

=
1

(2πε)d

∑
|α|≤N

(−iε)|α|

α!

[
∂|α|

∂ζαx

∣∣∣∣
ξ

a

]∫
TxX

∫
T ∗xX

e−i〈v,ζ〉/ε
∂|α|

∂vα
fψ(x, v)dζdv + rN

=
∑
|α|≤N

(−iε)|α|

α!

[
∂|α|

∂ζαx

∣∣∣∣
ξ

a

][
∂|α|

∂zαx

∣∣∣∣
x

f

]
+ rN

with the remainder

(2.52) rN(x, ξ) =
(−iε)N+1

(2πε)d

∑
|β|=N+1

N + 1

β!

∫
T ∗xX

∫ 1

0

(1− t)N ∂
|β|

∂ζβx

∣∣∣∣
ξ+tη

a

∫
TxX

e−i〈v,η〉/ε
∂|β|

∂vβ
fψ(x, v)dvdtdη

The integral de�nes the value of rN for �xed ξ, so �rst let |ξ| ≥ 1. Split the integral
in rN = rχN + r1−χ

N using a cuto� χ(η) equal to 1 where |η| ≤ |ξ/3| and with χ = 0 for
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|η| ≥ |ξ/2|.
By the Schwartz inequality and Plancherel's formula the �rst part has the bound

(2.53)

|rχN | ≤ CεN+1−d/2
∑

|β|=N+1

N + 1

β!

∥∥∥∥∥
∫ 1

0

(1− t)Nχ(η)
∂|β|

∂ζβx

∣∣∣∣
ξ+tη

adt

∥∥∥∥∥
L2(T ∗xX)

∥∥∥∥ ∂|β|∂vβ
fψ
∥∥∥∥
L2(TxX)

where the second expression is clearly bounded independently of x ∈ X. Now for a ∈ Sµ
and N ≥ µ we have by de�nition

(2.54)

∣∣∣∣∣χ(η)
∂|β|

∂ζβx

∣∣∣∣
ξ+tη

a

∣∣∣∣∣ ≤ Cχ(η) (1 + |ξ + tη|)µ−(N+1) ≤ Cχ(η) (1 + |ξ| − |η|)µ−(N+1)

where the second inequality holds because µ− (N + 1) < 0 and |η| < |ξ| on suppχ. We
use this to calculate the norm in polar coordinates and get

(2.55)

∥∥∥∥∥
∫ 1

0

(1− t)Nχ(η)
∂|β|

∂ζβx

∣∣∣∣
ξ+tη

adt

∥∥∥∥∥
L2(T ∗xX)

≤ C
∥∥∥χ(·) (1 + |ξ| − |·|)µ−(N+1)

∥∥∥
L2(T ∗xX)

≤ C (1 + |ξ|)d/2+µ−(N+1)

In the second part r1−χ
N we introduce D =

∑
iε
η2 ζx,j(η)∂jv k-times and then integrate by

parts. Since N ≥ µ we have
∣∣∂βξ a∣∣ ≤ C and we can use (2.53) and polar coordinates

with s = |η| to get

(2.56)
∣∣r1−χ
N

∣∣ ≤ CεN+1−d/2+k

(∫ ∞
|ξ|/3

sd−1−2kds

)1/2

≤ CεN+1−d/2+k |ξ|d/2−k

for every k > d/2, so r1−χ
N = O−∞(ε∞).

In the case |ξ| < 1 we choose our cuto� to be 1 for |η| ≤ 1/2 and 0 for |η| ≥ 1. A
calculation similar to the one just carried through then shows that rN is bounded.
Together these two cases prove that |rN | ≤ CεN+1−d/2 (1 + |ξ|)µ−k+d/2 and repetition of
these arguments for the derivatives of rN proves that rN is O(εN+1−d/2) in Sd/2+µ−(N+1)

and the expansion for σA,f .

It is important to note that the function σextB appearing in (2.47) depends on ε, so merely
taking lemma 2.21 and substituting this for f may not give a proper expansion in powers
of ε. To �nd this we must �rst expand σextB using essentially the same technique as in
lemma 2.21.

Lemma 2.22. Let b ∈ Sµ with B = Op(b). Then if we de�ne σextB : X × T ∗X → C by

(2.57) σextB (y, (x, ξ)) = ψx(y) |Θx(y)| e−iϕ(y,(x,ξ))/ε
[
B
(
|Θx|−1 ψxe

iϕ(·,(x,ξ))/ε)] (y)
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for every α ∈ Nd we have the asymptotic expansion

(2.58)
∂|α|

∂zαx

∣∣∣∣
y=x

σextB (y, (x, ξ)) ∼ ∂|α|

∂zαx

∣∣∣∣
y=x

|Θx|
∑
β∈Nd

∑
k≤
|β|
2

∑
β1+...+βk=β
|βj |≥2

(−iε)|β|−k

k!

[
∂|β|

∂ζβy

∣∣∣∣
dϕy

b

]
k∏
j=1

1

βj!

[
∂|βj |

∂z
βj
y

∣∣∣∣
y

ϕ(·, (x, ξ))

]

Proof. First let us note that di�erentiation in dϕ is with respect to the �rst variable,
that is

(2.59) dϕy =
∑
k

∂ϕ(·, (x, ξ))
∂zkx

dzkx

∣∣∣∣
y

=
∑
k

ζx,kdz
k
x

∣∣∣∣
y

=
∑
j,k

ζx,k
∂zkx
∂zjy

∣∣∣∣
y

dzjy

in normal coordinates around x and y respectively.
For x, y and ỹ close enough de�ne

(2.60) η(y, ỹ, (x, ξ)) = ϕ(ỹ, (x, ξ))− ϕ(y, (x, ξ))− 〈zy(ỹ), dϕy〉

and take note that η is linear in the ξ variable and that η(y, y, (x, ξ)) = 0. Now we
calculate

(2.61)
∂

∂zky

∣∣∣∣
ỹ

η(y, ·, (x, ξ)) =
∑
j

(
∂zjx
∂zky

∣∣∣∣
ỹ

− ∂zjx
∂zky

∣∣∣∣
y

)
ζx,j

which is obviously zero when y = ỹ.
Then we write

(2.62) σextB (y, (x, ξ)) = ψx(y) |Θx(y)|
[
B
(
|Θx|−1 ψxe

iη(y,·,(x,ξ))/εei〈zy(·),dϕy〉/ε
)]

(y)

and proceed with Taylor's formula as in (2.51) to get

(2.63) σextB (y, (x, ξ)) = ψx(y) |Θx(y)|
∑
|β|≤N

(−iε)|β|

β!

[
∂|β|

∂ζαy

∣∣∣∣
dϕy

b

][
∂|β|

∂zβy

∣∣∣∣
y

F (y, ·, (x, ξ))

]
+ RN(y, (x, ξ))

with F (y, ·, (x, ξ)) = ψx(y)eiη(y,·,(x,ξ))/ε. Of course both F and RN still depend on ε so
to complete the proof we must show that this is really an asymptotic expansion.
First use Leibniz' rule and (2.61) to compute

(2.64)

∂|β|

∂zβy

∣∣∣∣
y

F (y, ·, (x, ξ)) =
∑

0≤k≤
|β|
2

∑
β0+...+βk=β
|βj |≥2

(−iε)−k

k!β0!

[
∂|β0|

∂zβ0
y

∣∣∣∣
y

ψx

]
k∏
j=1

1

βj!

[
∂|βj |

∂z
βj
y

∣∣∣∣
y

ϕ(·, (x, ξ))

]
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If we evaluate this expression or its derivatives at y = x all the summands with β0 6= 0
will be 0 because ψx is equal to 1 in a neighbourhood of x, so this gives exactly the
claimed expansion.
The form of the remainder can be seen from lemma 2.21, but now the estimate of the
term

(2.65)

∥∥∥∥ ∂|β|∂vβ
ψ2(y, ·)F

(
y, expy(·), (x, ξ)

)∥∥∥∥
L2(TyX)

depends on ξ and ε, while the estimate on the part containing b is completely analogous.
In order to compute the order of ∂α|y=xRN we only need to calculate that of expressions
of the form

(2.66)
∂|α|

∂zαx

∣∣∣∣
y=x

∂|β|

∂zβy

∣∣∣∣
ỹ

F (y, ·, (x, ξ)) =: ∂αF β

and then proceed as in the proof of lemma 2.21. For this we will need the identities

(2.67)
∂

∂zkx

∣∣∣∣
y=x

η(y, ỹ, (x, ξ)) = 0 and
∂|α|

∂zαx

∣∣∣∣
y=x

∂

∂zky

∣∣∣∣
ỹ

η(y, ·, (x, ξ)) = 0 for |α| < 2

that can easily be derived from (2.61) and the formulas for coordinate changes (1.21)
and (1.22).
Now let us consider a single summand Sαβ of ∂

αF β. Since η is linear in ξ it is clear that

(2.68)

∣∣∣∣∣ iε ∂|β|∂zβy

∣∣∣∣
y

η(y, ·, (x, ξ))

∣∣∣∣∣ ≤ Cε−1 |ξ|

so if a summand Sβ,m of F β has m factors with |βm| = 1, then in the worst case it grows

like (ε−1 |ξ|)m+(|β|−m)/2
. By (2.67) for Sαβ coming from derivation of Sβ,m to be nonzero

there have to be at least |α1| ≥ 2m derivatives acting on those factors with |βm| = 1. So
we can have at most α2 = α− α1 derivatives acting on F . Then the exponent of ε−1 |ξ|
can be at most (|β| + m + α2)/2 ≤ (|β| + |α|)/2. So if we look at (2.53) we see from
the proof of lemma 2.21 that for every derivative we gain one order in the �rst part and
loose at most half an order in the second part. Therefore

(2.69)
∂|α|

∂zαx

∣∣∣∣
y=x

RN = O(ε(N+1−d−|α|)/2) in Sµ+(d+|α|−N−1)/2

Theorem 2.23. Let a ∈ Sµ and b ∈ Sν, with A = Op(a), B = Op(b). Then the symbol
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σAB of the operator product AB has the asymptotic expansion.

(2.70) σAB ∼
∑
α∈Nd

∑
β∈Nd

∑
k≤
|β|
2

∑
β1+...+βk=β
|βj |≥2

(−iε)|α|+|β|−k

α!k!

[
∂|α|

∂ζαx

∣∣∣∣
ξ

a

]

∂|α|

∂zαx

∣∣∣∣
y=x

{
|Θx|

[
∂|β|

∂ζβy

∣∣∣∣
dϕy

b

]
k∏
j=1

1

βj!

[
∂|βj |

∂z
βj
y

∣∣∣∣
y

ϕ(·, (x, ξ))

]}

Proof. To get the form of the expansion we start from (2.47) and use lemma 2.21 where
we insert for σextB and its derivatives the expansion proved in lemma 2.22.
It remains to be shown that the error is really O−∞(ε∞). Take from the proof of
lemma 2.21 the remainder rN , inserting for f the M -th order expansion (2.63) of σextB .
The terms (2.64) grow at most like (ε−1 |ξ|)|β|/2, so the only problematic term is rN(RM)
where we need to estimate the order of ∂α|yRN . Now for y 6= x the argument from the
proof of lemma 2.22 is not valid, but because of (2.67) we can choose a cuto� function
χ(x, y), equal to zero away from the diagonal, with

(2.71)
∣∣∣χε(x, y)

∂|α|

∂zαx

∣∣∣∣
y

∂

∂zky

∣∣∣∣
ỹ

η(y, ·, (x, ξ))
∣∣∣ ≤ C

√
ε (1 + |ξ|)−1

for |α| < 2.
We use this to split the integrand in two and get rN = rχN + r1−χ

N with r1−χ
N = O−∞(ε∞)

since 1 − χε vanishes near the diagonal (see remark 2.9). Then by de�nition of χε we
get

(2.72)

∣∣∣∣χε(x, y)
∂|α|

∂zαx

∂|β|

∂zβy
F (y, ·, (x, ξ))

∣∣∣∣ ≤ C(|ξ| /ε)(|α|+|β|)/2

so we have rN(RM) = O(ε(N+M+2)/2) in Sµ+ν+d−(N+M+2)/2.

The expansion just proved clearly de�nes a symbol that is unique in S∞/S−∞, so it
gives us the composition rule # known as the Moyal product and S∞/S−∞ as well as
S0/S−∞ are Algebras with this product.

Corollary 2.24. The second order expansion of σAB is explicitly given by

(2.73)

σAB(x, ξ) =
∑
|α|≤2

(−iε)|α|

α!

[
∂|α|

∂ζα

∣∣∣∣
ξ

a

][
∂|α|

∂zαx

∣∣∣∣
x

b

]

− ε2

12

∑
k,l,m,n

[
∂

∂ζn

∣∣∣∣
ξ

a

][
∂2

∂ζl∂ζm

∣∣∣∣
ξ

b

]
Rk
mln(x)ζk

+
ε2

6

∑
k,l

[
∂2

∂ζk∂ζl

∣∣∣∣
ξ

a

]
b(x, ξ) Rickl(x) +Oµ+ν−3(ε3)
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Proof. The form of the expansion is clear from theorem 2.23, where the order of a
summand is of course |α| + |β| − k. In order to determine the coe�cients we have to
calculate for |α| , |β| ≤ 2

(2.74) ϕαβ =
∂|α|

∂zαx

∣∣∣∣
y=x

∂|β|

∂zβy
ϕ(·, (x, ξ)) =

∑
k

ζx,k
∂|α|

∂zαx

∣∣∣∣
y=x

∂|β|zkx

∂zβy

From (1.22) we see that ϕ0β = 0 when |β| ≤ 2, so the only nonzero coe�cients with
k 6= 0 are

(2.75)
∂

∂znx

∣∣∣∣
y=x

∂2zkx
∂zly∂z

m
y

=
1

6

(
Rk
mln(x) +Rk

nlm)(x)
)

and because Rk
nlm = −Rk

nml we have
∑

l,mR
k
nlm∂

m,lb = 0 which gives us the second
summand. The only case in which ∂α |Θx| is nonzero is |α| = 2 and consequently
|β| = 0. We then have

(2.76)
∂2 |Θx|
∂zkx∂z

l
x

∣∣∣∣
x

= −1

6

d∑
m=1

(Rm
lmk(x) +Rm

kml(x)) = −1

3
Rickl(x)

as calculated in (1.19).

The ideas of the proofs of this section are all from [P�2] but we have corrected a sign
in the estimate (2.54) and the proof of lemma 2.22 is much longer because (2.64) only
holds in the point ỹ = y and not in a neighbourhood as stated in [P�2] (otherwise η ≡ 0
in this neighbourhood).

2.6 L2 bounds for Pseudodi�erential Operators

In this section we prove a version of the Calderon-Vallaincourt theorem for the calculus
we have just de�ned. This will allow us to extend the operators in Ψ0 to operators on
L2(X).

The proof follows that of Hörmander ([Hör], Lemma 18.1.11 and Lemma 18.1.12.)

Lemma 2.25. If K ∈ C (X ×X) and

(2.77) sup
y∈X

∫
X

|K(x, y)| dx ≤ C sup
x∈X

∫
X

|K(x, y)| dy ≤ C

then the integral operator K̂ with kernel K is a bounded operator on L2 (X) with norm
bounded by C.
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Proof. Let f ∈ L2 (X), using Cauchy-Schwarz' inequility gives us

(2.78) |K̂f(x)|2 ≤
(∫

X

|K(x, y)f(y)| dy
)2

≤
∫
X

|K(x, y)| |f(y)|2 dy
∫
X

|K(x, z)| dz

so, estimating the last integral by C, we get

(2.79)

∫
X

|K̂f(x)|2dx ≤ C

∫
X

∫
X

|K(x, y)| |f(y)|2 dydx ≤ C2

∫
|f(y)|2 dy

Theorem 2.26. Let a ∈ S0, then Op(a) is a bounded operator on L2(X).

Proof. For a ∈ Sµ with µ < −d the Operator A = Opψ (a) is an integral operator with
kernel

(2.80) KA(x, y) =
1

(2πε)d

∫
T ∗xX

ψx(y)e−iϕ(y,(x,ξ))/εa(x, ξ)dξ

and KA is obviously continuous and bounded by

(2.81) |KA(x, y)| ≤ 1

(2πε)d

∫
T ∗xX

C(1 + |ξ|)µdξ ≤ C

Now for n ∈ N, (1 + |exp−1
x (y)|2n)KA(x, y) (which is well de�ned because of the cuto�)

is also bounded and continuous since for n = 1

(2.82)

(1 + exp−1
x (y)2)KA(x, y) =

ψx(y)

(2πε)d

∫
T ∗xX

e−iϕ(y,(x,ξ))/ε

(
a(x, ξ) + ε2

∑
j≤d

∂2
ξj
a(x, ξ)

)
dξ

and in general it is the kernel of an operator associated to a symbol in Sµ consisting of
a and its derivatives.
Therefore KA satsi�es the conditions of lemma 2.25 and we have proven that A is
bounded if µ < −d.
Next we extend this result to all µ < 0 by looking at the quadratic form

(2.83) ‖Af‖2 = 〈Af,Af〉 = 〈A∗Af, f〉 ≤ ‖A∗A‖ ‖f‖2

and observing that the results of section 2.4 imply that A∗A ∈ Ψ2µ, and eventually
2kµ < −d for any µ < 0.

Finally take a ∈ S0, M = 2 ‖a2‖∞ and de�ne

(2.84) b(x, ξ) =
(
M − |a(x, ξ)|2

)1
2 ∈ S0
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since M/2 ≤
(
M − |a(x, ξ)|2

)
≤M and the square root ist smooth and bounded in this

region.
Now the product expansion 2.23 implies that

(2.85) C∗C = Op(M − |a(x, ξ)|2) + εR1

and the results ( 2.15, 2.19) of section 2.4 show that

(2.86) Op(|a(x, ξ)|2) = A∗A+ εR2

with R1, R2 ∈ Ψ−1. Consequently R = R1 + R2 is bounded because it is in Ψ−1. This
gives us the estimate for the norm of A

(2.87) ‖Af‖2 ≤ 〈A∗Af, f〉+ 〈C∗Cf, f〉 ≤ (M + ε ‖R‖) ‖f‖2

29



3 The Egorov Theorem

3.1 Proof of the Egorov Theorem

In the previous sections we have established a correspondence between classical and
quantum mechanical observables through the Weyl calculus. Here we want to use this
to show that the respective time evolutions of these observables di�er only by a small
amount when ε is small.

By the standard theory of ordinary di�erential equations the Hamiltonian vector �eld
XH = −{h, ·} generates a local �ow φt : T ∗X → T ∗X. This means that there is T > 0
such that for t ∈ [0, T ] the solutions of the Liouville equation d

dt
a = XH(a) are given by

a(t) = a ◦ φt.
A self-adjoint operator H generates a strongly continuous unitary group U(t) = e−iHt/ε,
this means that the solutions of the the Schrödinger equation (1.2) are ψ(t) = U(t)ψ0

where ψ0 ∈ D(H) is the initial state. The Heisenberg equation (1.3) for the observables
is then solved by A(t) = U∗(t)AU(t). We want to compare this time evolution to the
classical �ow φt via the quantisation and symbol maps. Since it is determined by the
commutator [H,A] we start by calculating the corresponding symbol σW[A,H]

Lemma 3.1. Let a ∈ Sµ, b ∈ Sν and A = OpW (a), B = OpW (b). Then we have

(3.1)

σW[A,B](x, ξ) =iε {a, b}

+
ε2

12

∑
k,l,m,n

Rk
mnl(x)ζx,k

∂3ab

∂ζx,m∂ζx,n∂ζx,l

+
ε2

6

∑
k,l

Rickl(x)

(
b

∂2a

∂ζx,k∂ζx,l
− a ∂2b

∂ζx,k∂ζx,l

)
+Oµ+ν−3(ε3)

where {·, ·} is the Poisson-bracket induced by the canonical symplectic form on T ∗X.

Proof. We use the expansion (2.73) for σAB, get the Weyl symbol from proposition 2.15
and then calculate σW[A,B] = σWAB −σWBA. Here it is important to note that any expression

appearing in σWAB that is invariant if we swap a and b will dissapear in σW[A,B].
Let α and β be the multiindices of theorem 2.23 and γ that of proposition 2.15. The
the zeroth order expression corresponds to |α| = |β| = |γ| = 0, so it is equal to σAσB
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3. The Egorov Theorem

and clearly dissapears in σW[A,B]. Now to �rst order in σWAB we have the cases |α| = 1,

|β| = |γ| = 0 and |γ| = 1, |β| = |α| = 0 and get

(3.2) iε

(∑
k

1

2

∂

∂ζx,k

∂σAσB
∂zkx

− ∂σA
∂ζx,k

∂σB
∂zkx

)
=
iε

2
{σA, σB}

and use σA = a− iε
2
∂ζ∂za+Oµ−2(ε2) to �nd

(3.3)
iε

2
{σA, σB} =

iε

2
{a, b}+

ε2

4
({∂ζ∂za, b}+ {a, ∂ζ∂zb}) +Oµ+ν−3(ε3)

From this we already see that the �rst order expansion is given by

(3.4) σW[A,B] = iε{a, b}+Oµ+ν−2(ε2)

To �nd the expressions of order ε2 we proceed as above and start by calculating the
expressions for β = 0 and di�erent α and γ.

(3.5) |α| = 0, |γ| = 2 : −ε
2

4

∑
k,l

∂2

∂ζx,l∂ζx,k

∂2σAσB
∂zlx∂z

k
x

which is of course symmetric in a and b.

(3.6) |α| = 2, |γ| = 0 : −ε
2

2

∑
k,l

∂2σA
∂ζx,l∂ζx,k

∂2σB
∂zlx∂z

k
x

(3.7)

|α| = 1, |γ| = 1 :
ε2

2

∑
k,l

∂

∂ζx,k

∂

∂zkx

(
∂σA
∂ζx,l

∂σB
∂zlx

)
=
ε2

2

∑
k,l

(
∂

∂zkx

∂σA
∂ζx,l

∂

∂zlx

∂σB
∂ζx,k︸ ︷︷ ︸

symmetric

+
∂2σA

∂ζx,l∂ζx,k

∂2σB
∂zlx∂z

k
x︸ ︷︷ ︸

negative of (3.6)

+
∂

∂ζx,l

[
∂

∂ζx,k

∂σA
∂zkx

]
∂σB
∂zlx

+
∂σA
∂zlx

∂

∂zlx

[
∂

∂ζx,k

∂σB
∂zkx

])
As we can see from (2.73) the terms with |β| 6= 0 are just those in the second order
expansion of σAB that contain the curvature. Now we use σA = a + Oµ−1(ε) and
calculate σW[A,B] = σWAB − σWBA. The last two summands of (3.7) combined with their

counterparts from σWBA exactly cancel with the ε2 part of (3.3), so the only remaining
summands of order ε2 are those containing the curvature. They can be simpli�ed to
those of (3.1) using the symmetries of Rk

mln.

Theorem 3.2. Let h ∈ Sµ with H = OpW (h) self adjoint and U(t) := e−iHt/ε. Let φt,
t ∈ [0, T ] be the Hamiltonian �ow generated by h. If a ∈ C∞0 (T ∗X) then

(3.8)
∥∥U∗(t)OpW (a)U(t)−OpW (a ◦ φt)

∥∥
L(L2(X))

≤ CT
(
ε ‖R‖+ ε2

)
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3. The Egorov Theorem

where

(3.9) ‖R‖ = sup
x∈X

max
k,l,m,n

∣∣Rk
lmn(x)

∣∣
Proof. De�ne A(t) = U∗(t)OpW (a)U(t) and At = OpW (a ◦ φt) and check that

(3.10)
d

dt
(Atf) = OpW

(
d

dt
[a ◦ φt]

)
f = OpW (−{h, a ◦ φt}) f

because a has compact support, and that

(3.11)
d

dt
A(t)f =

i

ε
[H,A(t)] f =

i

ε
U∗(t) [H,A(0)]U(t)f

when f ∈ D(H), which is just the property of the unitary group. We use this together
with the expansion σW[H,At−τ ] = iε{h, a ◦ φt−τ} + ε2r(t − τ) + ε3c(t − τ) from lemma 3.1

to calculate for f ∈ D(H)

(3.12)

[A(t)− At] f =

∫ t

0

d

dτ
U∗(τ)At−τU(τ)fdτ

=

∫ t

0

U∗(τ)

(
i

ε
[H,At−τ ] + OpW ({h, a ◦ φt−τ})

)
U(τ)fdτ

= −
∫ t

0

U∗(τ)OpW
(
εr(t− τ) + ε2c(t− τ)

)
U(τ)fdτ

Now because a has compact support so does a ◦φt, so r(t) and c(t) are in S−∞ for every
t ≤ T . The dependence of these remainders on t is obviously continuous. Since D(H) is
dense in L2(X) we can estimate the norm

(3.13)

‖A(t)− At‖L(L2(X)) ≤ CT sup
t∈[0,T ]

(
ε
∥∥OpW (r(t))

∥∥
L(L2(X))

+ ε2
∥∥OpW (c(t))

∥∥
L(L2(X))

)
This gives us (3.8) if we take into account the dependence of r on the curvature from 3.1.

Remark 3.3. We see that the approximation is of order ε2 if R = 0. IfX is not �at there
cannot be a second order approximation of U by a Hamiltonian �ow since the remainder
r contains derivatives of the observable a of order greater than one and therefore the
map X(a) = {h, a} + εr does not satisfy the Leibniz rule and is consequently not a
vector �eld.

Remark 3.4. The condition a ∈ C∞0 (T ∗X) is of course very restrictive. From the proof
we can see that the Egorov Theorem will hold for h ∈ Sµ, a ∈ Sν with µ+ ν − 2 ≤ 0 if
we can prove a ◦ φt ∈ Sν and (3.10). This of course depends strongly on h.
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3. The Egorov Theorem

Remark 3.5. We would like to emphasise that the growth of A(t)−At is not linear in
time because the remainders depend on a ◦ φt and it's derivatives. To get an estimate
on the time dependence of the error one needs additional assumptions on h to prove
bounds for φt and it's derivatives. If all the relevant derivatives of φt can be bounded
by ecT the error is bounded by εTCecT so the approximation is valid up to times of the
order of the Ehrenfest time − log ε. Estimates of this kind are proved for Hamiltonians
growing at most quadratically in ξ in [BGP] and [BR].

3.2 Example: Constraint Quantum Dynamics

In this section we will apply the Egorov Theorem 3.2 and the pseudodi�erential calculus
developed in chapter 2 to a recent result by Teufel and Wachsmuth [WT] on the dynamics
of quantum systems constrained to submanifolds.

Let (M, g) be a Riemannian mainfold of bounded geometry and consider the
Schrödinger equation with the Hamiltonian H = −∆ + Vε. Let Vε be a potential that
localises a certain class of states in an ε-tube around a submanifold X ⊂ M . If X is
also of bounded geometry and the embedding X ↪→ M has bounded derivatives of any
order, then under suitable assumptions on Vε the result [WT, theorem 1] is that we
can equip X with an e�ective metric Ge� and de�ne an e�ective Hamiltonian He� with
D(He�) ⊂ L2(X) (with measure induced by Ge�) such that the e�ective time evolution
e−iHe�t/ε on X is a good approximation of the original one in the following sense: there is
a mapping U satisfying UU∗ = 1 from a space of suitable initial conditions H0 ⊂ L2(M),
with associated projection P0, to L

2(X) so that

(3.14)
∥∥[e−iHt/ε − U∗e−iHe�t/εU

]
P0

∥∥
L(L2(M))

≤ Ctε2

The e�ective Hamiltonian is:

(3.15) He�f = −ε2
[
∆Ge�

+ i(d∗A(x))−A2(x)
]
f − 2iε2Ge�(A, df) + E0(x)f

The objects in this equation are:

• the e�ective metric

(3.16) Ge� = G+ εB

where G is the metric induced on X by g and B : TM × TM → R is a symmetric
bilinear map depending on the second fundamental form of the embedding X ↪→
M . It is with respect to this metric that the objects in (3.15) are to be understood.

• the connection 1-form A of the generalised Berry connection (see [WT, theorem
2] for a de�nition).

33



3. The Egorov Theorem

• the codi�erential operator d∗ which on 1-forms is de�ned by

(3.17)

∫
X

fd∗A =

∫
X

Ge�(A, df)

for every function f ∈ C∞0 (X).

• the e�ective potential E0 that also accounts for the energy of the motion in the
direction normal to X.

Now suppose He� ∈ Ψ2. Then we can use the pseudodi�erential calculus on (X,Ge�) to
determine the Weyl-symbol he� = σW (He�) as in the examples 2.12 and 2.16. We get:

• σ[−ε2∆Ge�
](x, ξ) = Ge�(ξ, ξ)− ε2

3
κ(x) = ξ2 +O0(ε2) = σW [−ε2∆Ge�

](x, ξ)

• d∗A and A2 are multiplication operators, so they are equal to their symbols.

• σ[iεGe�(A, d)](x, ξ) = −Ge�(A, ξ) by a calculation similar to that of
example 2.12b) and σW [iεGe�(A, d)] (x, ξ) = −Ge�(A, ξ)− iε

2
d∗A

Adding these up we get

(3.18)
he�(x, ξ) = ξ2 + 2εGe�(A(x), ξ) + ε2A2(x) + E0(x)− ε2

3
κ(x)

= (ξ + εA(x))2 + E0(x) +O0(ε2)

which is the classical Hamiltonian for a particle interacting with a potential E0(x) and a
weak magnetic �eld B = εdA. It is in S2 if E0 and the components of A are in C∞b (X).
Now we can apply the Egorov Theorem 3.2 and get:

Corollary 3.6. Put h0
e� = ξ2 + E0(x) and let a ∈ C∞0 (T ∗X). If h0

e� ∈ S2, then E0(x)
and its derivatives are bounded and the �ow φ0

t exists globally in time. By (3.14) and
the Egorov Theorem we have for all t ≤ T

(3.19)
∥∥P0

[
eiHt/εU∗OpW (a)Ue−iHt/ε − U∗OpW

(
a ◦ φ0

t

)
U
]
P0

∥∥
L(L2(M))

≤ CT ε

Proof. To see that φ0
t exists globally start with some initial value (x, ξ) and write the

di�erential equations in normal coordinates at x:

(3.20)

dzkx
dt

= 2ζx,k

dζx,k
dt

= −∂E0

∂zkx

Because E0 and its derivatives are bounded there is a Lipschitz constant for the right
hand side that does not depend on the point (x, ξ). The Picard-Lindelöf theorem then
gives existence of φ0

t up to a time T which is also independent of (x, ξ). We can now
apply the same argument to the initial value φ0

T (x, ξ) and see that φ0
t must exist for

every t ≥ 0.
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3. The Egorov Theorem

To complete the proof observe that OpW (a ◦ φ0
t ) approximates eiHe�t/εOpW (a) e−iHe�t/ε

up to order ε by the Egorov Theorem 3.2 and that this still holds after applying UP0 and
P0U

∗ because their norm is 1. The unitary groups eiHe�t/ε and eiHt/ε are close by (3.14)
and OpW (a) is a bounded operator so we can deduce the result with a standard 3ε-
argument.

Since the error in 3.6 is of order ε we could also have used the induced metric G instead of
Ge� for quantisation without changing the result. The case where we can see additional
geometric e�ects, like the Berry connection and the correction to the metric, in the
semi-classical approximation is when the induced metric is �at.

Corollary 3.7. Let he� ∈ S2 and φεt be the �ow generated by this function (which exists
globally in time). Let a ∈ C∞0 (T ∗X) and assume the induced metric G on X to be �at,
then for all t ≤ T

(3.21)
∥∥P0

[
eiHt/εU∗OpW (a)Ue−iHt/ε − U∗OpW (a ◦ φεt)U

]
P0

∥∥
L(L2(M))

≤ CT ε
2

Proof. If G is �at, then the curvature of Ge� is of order ε, so in (3.8) the curvature terms
in the error are of order ε2. The arguments used in the previous corollary then prove
the result.

These corollaries show that there is a class of observables on M , namely those that are
equal to P0U

∗OpW (a)UP0 for a ∈ C∞0 (T ∗X), that behave in this sense semi-classically
as ε→ 0. A more detailed discussion of semi-classical observables on the di�erent spaces
for the case M = Rd, X = Rd−k can be found in [Teu].
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Index of Notation

Symbol Explanation Page
N natural numbers including 0
X connected Riemannian manifold of bounded geometry

with metric g and dimension d
TX, T ∗X tangent and cotangent bundle of X 5
ρX injectivity radius of X 5
Bx(0, r) open ball of radius r around 0 ∈ TxX 5
Ux,r neighbourhood of radius r of x ∈ X 5
Rk
lmn coe�cients of the curvature tensor 7

Rickl coe�cients of the Ricci tensor 7
κ scalar curvature 7
C∞(X) smooth functions X → C
C∞(X,R) smooth functions X → R
C∞0 (X) smooth functions with compact support
Ckb (X) k-times continuously di�erentiable functions

with bounded derivatives 6
S(Rd) Schwartz functions on Rd

L2(X) square integrable functions X → C 5
Sµ(T ∗X)(= Sµ) symbols of order µ 10
Op(a) quantisation of a 12
OpW (a) Weyl-quantisation of a 19
Ψµ(X) quantisations of symbols of order µ 14
σA symbol of A 17
σWA Weyl-symbol of A 19
Oµ(εk) order εk in Sµ 11

38


	Introduction
	Notation
	Normal Coordinates and Manifolds of Bounded Geometry

	Pseudodifferential Operators on Manifolds
	Spaces of Symbols and Asymptotic Expansions
	Quantisation by Oscillatory Integrals
	The Symbol Map
	Weyl-Quantisation
	Products of Pseudodifferential Operators and their Symbols
	L2 bounds for Pseudodifferential Operators

	The Egorov Theorem
	Proof of the Egorov Theorem
	Example: Constraint Quantum Dynamics

	Bibliography
	Index of Notation

