The Semi-Classical Egorov Theorem
on Riemannian Manifolds

Diplomarbeit

im Fach
Mathematik

betreut von
Prof. Dr. Stefan Teufel

Eberhard Karls Universitdt Tiibingen
Fakultat fir Mathematik und Physik

Jonas Lampart
2009



Contents

1 Introduction
1.1 Notation . . . . . . . . . . . . ... ...

1.2 Normal Coordinates and Manifolds of Bounded Geometry . . .. .. ..

2 Pseudodifferential Operators on Manifolds

2.1 Spaces of Symbols and Asymptotic Expansions . . . . . . ... ... ...

2.2 Quantisation by Oscillatory Integrals . . .
2.3 The Symbol Map . . . ... ... .. ...
2.4 Weyl-Quantisation . . ... ... ... ..

2.5 Products of Pseudodifferential Operators and their Symbols . . . . . . .

2.6 L? bounds for Pseudodifferential Operators

3 The Egorov Theorem
3.1 Proof of the Egorov Theorem . . . .. ..
3.2 Example: Constraint Quantum Dynamics

Bibliography

Index of Notation

(&)

10
11
17
19
21
27

30
30
33

36

38



1 Introduction

The mechanics of our everyday world are accurately described by the laws of Newton’s
classical mechanics, whereas on the much smaller scale of atoms and molecules such a
description can only be achieved in the framework of quantum mechanics. Of course
the physical laws on the small scale completely determine those on a larger one. So the
question that naturally arises is if and how classical mechanics can be regarded as a
certain scaling limit of quantum mechanics.

The answer to this question should also shed some light on the circumstances under
which classical mechanics provide a valid description of a system.

Let us now review the mathematical framework in that this question can be precisely
formulated and answered. We will formulate both theories in terms of their observables,
i.e. quantities of the system that can be measured by an observer.

In classical mechanics we can represent the state of a system by the current positions
x and momenta p of the particles in the system, which corresponds to a point in phase
space. The dynamics of this system are determined by the Hamiltonian total energy
2

function h, for example h = 2- + V/(z) for particles of mass m moving in a potential V.
An observable a is represented by a real valued function on phase space and its equation
of motion is the Liouville equation

da Oh da  Ohda
(1.1) — =—{ha}=——— — ——

dt OpOdx Oxdp
where { , } is called the Poisson bracket.
By contrast in quantum mechanics a state ¢ is a vector in the Hilbert space of square
integrable functions on configuration space X, that is the space of the particles’ positions
only. Its evolution in time is determined by the Schr’f&%dinger equation

oY
1.2) th— =H
(12) inS = Hy
where H is a self-adjoint linear operator on L?*(X) called the Hamiltonian. For N
particles with equal masses moving in a potential V' and Euclidean space we would have
2 .

H = — = A+V(x) where A is the Laplace operator on R*". The observables of quantum

2m
mechanics are the self-adjoint operators on L?(X). They obey the Heisenberg equation

(1.3) % _ % H, A] = % (HA — AH)
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Observe that in these equations A fixes an energy scale. So the limit of high energies,
where one expects classical mechanics to be valid, is mathematically described by the
limit A — 0. This is called the semi-classical limit.

There are cases where the equations have this structure but the scaling-parameter is
actually not A. For example it could be the mass-ratio of electrons versus nuclei as
in the Born-Oppenheimer approximation. In section 3.2 we present the example of
constraint quantum dynamics which somewhat generalises this approximation.

To avoid confusion we now introduce the semi-classical parameter ¢ and consider € — 0
as the semi-classical limit .

In order to compare these theories we need to find a correspondence between their
respective observables. Since there may be quantum observables that do not correspond
to any classical quantity this means we want to find a ’quantisation’ map taking functions
on phase space to self-adjoint operators. This allows us to identify classical and quantum
systems when quantisation maps the respective Hamiltonians to one another. Given this
map and the identification of the systems we can compare the dynamics on both levels.

The Egorov Theorem states that they are close in the sense that the difference of the
time evolutions of an observable is of order . To put this more precisely let Op() be
the quantisation map, then there is a constant C7 such that for all ¢ € [0, T]

(1.4) 10p(@)(t) — Op(a(t))llzzzxy < Cre

To prove this theorem of course one needs to specify the quantisation map as well as the
classes of observables and spaces for which it is supposed to hold. A simple proof for
the case X = R? can be found in the book by Robert [Rob|. This result was extended
to compact Riemannian manifolds by Schubert [Sch| and to observables on an extended
phase space by Uribe and Paul [PU|. Here we will present a detailed proof in the setting
where the configuration space X is a Riemannian manifold of bounded geometry (see 1.2
for a definition) and phase space is the cotangent bundle T*X. To get a quantisation
formula we will develop a (semi-classical) calculus of pseudodifferential operators based
on the work of Pflaum |Pfll, Pfi2] and Safarov [Saf]. From this we will get an explicit
dependence of the error on the curvature, showing in particular that the approximation
is one order better if the curvature is zero.

An important field of application for the Egorov Theorem is quantum chaos, the study
of quantum systems whose corresponding classical systems have some ’chaotic’ property
like ergodicity, mixing or unstable fixed points. A survey of this field can be found in
the article by Zelditch |Zel.
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1.1 Notation

First of all let us introduce some notation: Let a = (av, ..., aq) € N? be a multiindex
and z = (z1,...,74) € RY We put

d

d
) Jaf = Zaj al = Haj! ¥ = 1_[31:?7
=1

j=1

Let (X, g) be a Riemannian manifold of dimension d, p : TX — X its tangent and
m:T*X — X its cotangent bundle.

When ¢ € TiX, v € T, X we write v? = |v]* = g(v,v), & = g(£,€) and denote by
(v,&) = &£(v) the duality bracket.

We define the L? product of f,g € C°(X) by (f,g) fX x)dx, where dr denotes
the canonical volume density.

The space L?(X) is the completion of C§°(X) under the norm | f|,. = /([ f)-

The formal adjoint of a linear operator A is the operator A* such that (f, Ag) = (A*f, g)
for all f,g € C3°(X) and the transpose AT is the operator that satisfies this equation for
all f,g9 € C®(X,R).

An unbounded linear operator on L?(X) is a tuple (A, D(A)) where the domain D(A)
is a linear subspace of L*(X) and A : D(A) — L?*(X). Such an operator is called
symmetric if D(A) is dense and (f, Ag) = (Af,g) for all f,g € D(A). If additionally
D(A*) :={f € L*(X) : 3h Vg € D(A) : (f,Ag) = (h,g9)} = D(A) then A is called
self-adjoint.

The capital letter C' will be used to denote various constants that may differ even in a
single equation.

1.2 Normal Coordinates and Manifolds of Bounded
Geometry

On a Riemannian manifold we have a set of natural coordinates, called geodesic or
normal coordinates, that can be calculated from the metric. Here we will introduce
these coordinates and derive some identities for later use. In this context we also define
manifolds of bounded geometry on which we have a natural way to define functions with
globally bounded derivatives.

For every x € X there exists a neighbourhood U, such that for all y € U, there is a
unique geodesic of minimal length ~, , in U, joining = and y. If we take 7, ,(1) = y then
|Y2.4(0)| is the length of the geodesic. Identification of y and z,(y) := ¥,,(0) gives rise
to a diffeomorphism exp, : V C T, X — U,, exp, z:(y) = 724(1) = v.

Let p(z) be the supremum of all » > 0 for which exp, : B,(0,r) — U,, is a diffeomor-
phism and define the injectivity radius of X as px = inf,cx p(z).
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Clearly for r < px exp, : B;(0,7) — U, is a diffeomorphism for every z € X.
Choosing an orthonormal basis (e;) <4 of T, X gives us normal (also called canonical or
geodesic) coordinates z, on U, via

(1.6) 25(y) = g (exp; 'y ex) = 9(524(0), €x)

Obviously z,(z) = 0 and %Lﬁ = ey, in these coordinates so the coefficients of the metric
tensor in x are gy () = g(ex, e;) = 0.

The coordinate functions 2 of course depend on the choice of orthonormal basis (e;) <4,
but we can compare normal coordinte systems based at different (sufficiently close)

points x, y by choosing such a basis in one of them (say x) and the basis induced by the
orthonormal frame (1.10) in y.

Definition 1.1. A Riemannian manifold X is of bounded geometry if

1. px>0

2. The transition functions between normal coordinate charts have bounded deriva-
tives to any order, i.e. if r < py and U,, NU,, # 0, then for every multiindex «
there is a constant C, , (independent of 2 and y) such that:

olel»
1.7 <,
0 |G| <.
on Uy, NU,,.

This definition is discussed in more detail in [Shu|. Examples are compact manifolds or
covering manifolds thereof and Lie groups, which of course include R

px > 0 implies that every geodesic can be extended indefinetely, so X is geodesically
complete and by the Hopf-Rinow theorem (see [Jos|) the closed and bounded sets K C M
are compact.

Bounded geometry provides a notion of C¥-bounded functions

Definition 1.2. Let X be of bounded geometry. f € C*(X) has bounded derivatives up
to order k, write f € CF(X), if for every multiindex o with |a| < k and r < px there is
a constant C, , for which

olel
) [

1| <,
on every patch of normal coordinates z, : U, — R¢.

Of course this definition can also be glven without bounded geometry but it would not
be as natural since the derivatives —| f would have to decay in regions where the
derivatives of coordinate changes are large.
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Normal coordinates also induce bundle coordinates (z,, ;) on T*U, by

Now let Wy, (t) : To.X — T, X and @y(t) : T3X — T5 )X be parallel transport
along v,, with respect to the Levi-Civita connection, where the latter is defined by
identification of 77 X with T, X through g. g (¥, v, ¥, ,w) and (¥, ,, P, &) are constant
along 7, , because the connection is metric and therefore ¥, , and ®,, are orthogonal
maps.

We define an orthonormal frame E of T'U, by

(1.10) ex(y) = Uy yex

and see that this gives us 2 (y) = g(Ya,y(1), €x(y)) = —z} () because 4, ,(1) = %, +(0).
Let R be the curvature tensor. In local coordinates x = (!, ..., 2%) with 9, = k we
put

(1.11) g (R(Ok,01)Om, On) = Ritmn = Zg]lemn

and define the Ricci- and scalar curvatures by

(1.12) Ricg(z Zkal and ngl )Ry (x

We have the identities (see for example [dC, p. 93])

len + Rnlm + R?ﬁ”ml =0
R mn — Rmn
(113) kl )
Rklmn = _Rklnm
RiCkl = RiClk

If X is of bounded geometry the coeffecients of the curvature and metric tensors and
their derivatives are bounded by global constants when written in normal coordinates
on patches U, , with r < px. To calculate some important geometric quantities we now
make use of the expansion of the metric in normal coordinates around x derived in the
book of Berline, Getzler and Vergne [BGV, p. 36].

(1.14) gr(y) = Ons — %Zkazn(ﬁﬂ)z?(y)Zﬁ(y) +O(z(y))

First of all we compute the Christoffel symbols

1 0 8 8
k —— § . _ nk _
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Then put G(y) = /det g(y) and see that the Laplace-Beltrami Operator takes the
form

(1.16) Af(x R [ azk } Z B
Next we introduce O,(y) : T, X — T, X as the change of basis

Z @ke]

We have (see [BGV]) [0,(y)| := |det ©,(y)| = |det(D,, exp,)| = G(y) and thus write
|0, (v)| = |det(D, exp,)|. O, has the local expansion:

1. 17
( 82’“

(1.18) ©fF = oF — ZRM 2™ ()2 (y) + Oz °)

from which we see that

(1.19)
920, 007 .| 995, %0 m
0zk0zL - Z sgnalz Ozk 8zl H @"(J * Z 82’“821
r €Sy MFEN fr L j#mn T gt m =~ )
=0 =%5(j)
a 1
Z (@) + Ry () = 3 Ricy ()

m:l
Now ©,(7) is invertible for § € U, so we can use the equation

0| _ Lg-1ym 9
3_25 ; - Z(@y)k (@x )z 9zm ;

lym

(1.20)

together with (1.18) to calculate the derivatives of coordinate changes

e SR A Cr
(t2y 7t , | |
=54 =3 (Bl @02 0) ~ B )40)7 @) + Oz + 5)
(122) T < S (B o) + Boa()) 20) — (Bl (9) + Bha(0) 51 (0)]

+ O(|z + zy\2)



2 Pseudodifferential Operators on
Manifolds

In this chapter we introduce a semi-classical (with parameter ¢) pseudodifferential cal-
culus on manifolds of bounded geometry as the main tool for the proof of the Egorov
Theorem. We will start by specifying classes of (complex valued) observables, called
symbols, for which we then define a quantisation map and its inverse, the symbol map.
We will also establish the relationship between bounded symbols and bounded operators
that we need to get the estimate (1.4) in the operator norm. For this we will need global
bounds on symbols and their derivatives, so it will be convenient to restrict ourselves to
manifolds of bounded geometry.

In the following sections we study products of pseudodifferential operators to be able to
express the Heisenberg equation on the level of symbols and introduce another quanti-
sation formula, Weyl quantisation, mapping real valued symbols to symmetric operators
and thus giving the desired relation for the physical observables.

We want results that do not depend on some choice of coordinates so we try to formulate
everything in a coordinate-free way and whenever we need to do a calculation in local
coordinates we use normal coordinates as these are intrinsically defined. Our results will
then only depend on the geodesics on X. They are consequently independent of the
representation in coordinates but depend of course on the metric.

Safarov [Saf] treats the more general case of manifolds with a linear connection and gets
similar results depending on that connection.

The calculus we get is a slightly modified version of that described by Pflaum in [Pf2],
from where we have also taken most of the ideas for the proofs. The formulas for Weyl
quantisation and the Weyl symbol are due to Safarov [Saf] and similar formulas can be
found in [Pl1].



2. PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS

2.1 Spaces of Symbols and Asymptotic Expansions

From now on let (X, g) be a Riemannian manifold of bounded geometry and, for sim-

plicity, connected.

Definition 2.1. A function a € C®(T*X) is called a symbol of order p € R if for
every r < px and multiindices o, 3 there are constants C, , g such that for every normal
coordinate chart z, : U,, — R? we have

olel glol (
———alx,
0z ¢y

(2.1)

for every (z,¢&) € T*U,,.

)| < Crap(l+ ¢y

We denote the space of symbols of order u by S*(T*X) (or just S*) and define

S (T°X) =

SN

SHT*X) as well as S®(T*X) = g S*(T*X).

To check if a function a € C*®(T*X) is a symbol of order p it suffices to check this in
normal coordinates centered at x = w(§) for every z € X.

Proposition 2.2. Let a € C>®(T*X).

Co,p such that

|ex] 18]
(22) g s a—ﬁa

% In(e)=2 0C
then a € S*.

(m(€),6)| < Cap(1 + [])* 1A

If for all multiindices o, B there are constants

Proof. Let r < px and z, : U,, — R? be a normal coordinate chart. For x € U,, we

o l
have <;p,k - Zl Cy,la_z;;;7 SO

da(z, §)

da(z,§) (925 da(x,§)

D <2 0
(2:3) da(z,§) 0zt da(x, )
ok o 0zF 0z,

0oy Oz 02

Cam

Observe that in the last term the growth coming from (, is cancelled by the derivative
in the same variable. Now by the definition of bounded geometry 1.1 the derivatives of
coordinate changes are bounded by a constant that depends only on r and the order of
differentiation. This gives us the required estimate for first order derivatives and those

for higher orders follow inductively.

Example 2.3.

a) If a € Cg°(X) then aom € SU(T*X).

10

]
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b) Let V € C°(X), then a(z,&) = & + V(x) € S*(T*X).

¢) For a € S* and b € S” we obviously have a +b € S™>t¥) and ab € S#* by Leibniz’
rule.

Later on we will be interested in expansions of symbols with respect to a parameter ¢.
We say that a function f € C®(T*X) is of order " in S*(X) and write f = OF(e")
if there is g9 > 0 such that e f € S*(X) (with constants independent of ) for all
e € (0,g0). A symbol is O (e>) if it is O¥(e*) for every k.

Next we define the notion of asymptotic expansion.

Definition 2.4. A symbol a € S* has the asymptotic expansion
(24) a~ Z e*ay,
k=0

if ap € S* for every k and
N

(2.5) a— Zékak = OH(eN
k=0

It is a standard result (see the lecture notes by Evans and Zworski [EZ]) that an expan-
sion of this form always defines a symbol in S* that is unique up to OF (™).

The symbols we have just defined have global bounds, i.e. the constants in (2.1) are
independent of the coordinate neighbourhood in which we take the estimate. Usually
this is only required locally, so our symbol classes are subclasses of those defined for
example in [Hor, P12, Saf]. These classes coincide when X is compact.

We could also consider more general symbol classes as done in [Pfl2, Saf]. For example
they could take values in vector bundles over X or differentiation could have a modified
influence on decay. Most of these generalisations do not change much in the theory but
may overburden the presentation, so we will stick to our simple case here.

2.2 Quantisation by Oscillatory Integrals

The basic idea of the quantisation map is that on R®*" the kinetic energy operator

2 . . 2 . . . . .
Hy = —;—mA has the 'Fourier-representation’ - which is just the classical kinetic
energy if we interpret p as momentum. More precisely if F is the Fourier transform with

inverse F ! then for f € D(H)

26) ~g 0 =7 | L (F) )

11
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First we define the Fourier transform for symbols of order —oo, which are functions that
decrease rapidly in every fibre.

F S (TX) — §(T"X)
(2.7) (Fa) (z,&) = / Xe_“”’@/ea(x,v)dv

and
F1:8(T"X) - S(TX)

-1 __L [ wer
(f CL) (x,v) - (27T€)d /TIX A ( g) £

Here dv and d¢ denote the volume densities induced by g on 7, X and 77X, ie. in-
tegration is with respect to the Lebesgue measure with lengths measured by g. Since
integration is only over T, X = R? all the standard results for the Fourier transform are
valid. In particular F~! is the inverse of F. This is expressed by the formula

2 —i(v—w,&) /e _
9) 27?5 /x / a(x,v)dvdé = a(x,w)

(2.8)

Let a € S*(X) with yu < —d. Then the integral

1 €
(27r€)d/T;Xe e at, £)d

exists in the sense of Lebesgue for every v € T, X.
In particular if y € V,, for a normal coordinate neighbourhood of = we can put I,(z,y) =
I.(z, z:(y)) and interpret this as a (z-dependent) distribution on C§°(V,.) by

(2.10) I,(x,v) =

(211) [a(l')f: [a(l'?y)f(y)dy

Va

We generalise this idea to define an operator associated to a symbol by using suitable
cutoffs.

Definition 2.5. Let r < px and W C V C {(z,v) € TX : |v| < r} be neighbourhoods
of the zero section.

Let ¢ : TX — [0,1] be a smooth cutoff function with suppy) C V' and |y = 1. Then
the map (m,exp) : V — U C X x X is a diffeomorphism and exp,(V,) C U, is a normal
coordinate neighbourhood of z. Let 1, (y) = ¢¥(z, z.(y)) € C;°(X x X).

Define the phase function ¢ : X x T*X|y — C by ¢(y, (z,£)) = (z(y), &).

12
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Then the quantisation of a € S*(X) (with cutoff ¢) is a linear map C§°(X) — C*(X)
given by

(Opy (@) f)(a) = (2% [ [ ot e, ey
(2.12) X
(27e)d / / ) [ib(a, v)e 0 a(x, €) f(exp, v)dEdv

This is clearly a linear map, but at first this definition only makes sense when 1 < —d.

For better understanding let us examine this definition in the case X = R?. The phase
function reads ¢(y, (z,€)) = (y — x,&), where it is instructive to note that y — x is the
vector pointing straightly from x to y = exp,(y — x), where we evaluate f.
Furthermnore |©,(v)| = 1 so the formula simplifies to

(2.13) (Opy (a) f)(x) = @ /Rd » U(x,y — a:)e_i<y_m’5>/€a(x,§)f(y)d§dy

This is just the usual quantisation formula for X = R? apart from the introduction of
the cutoff function. We will see later that this is only a minor diffenerence.

Now we can view (2.12) as the natural geometric generalisation of the usual definition by
replacing vectors that 'point’ somewhere by the tangent vectors to the geodesics ending in
that point (and restricting ourselves to neighbourhoods where this makes unambiguous
sense).

In order to extend the definition we take a € S*(X) and approximate it by
an(z,&) = x(&/n)a(x, &) € S7°(X), where y is a smooth cutoff function with y =1 on
Br(¢)(0,1),and make use of the following

Lemma 2.6. Let U,, be a normal coordinate neighbourhood of v with r < px, then
there is a first order differential operator L on U,, x T*U,, for which

i) Le /¢ = e~iele

i) (L7)* [a(z,6)f(y)] € S*H(T*Us,) for a € S*, f € C3%(Usy) and every y € U,

Proof. Take
d

1 , 0

in normal coordinates around z, which clearly satisfies the first equation. Now writing
the integral in these coordinates and integrating by parts gives

1 d )
T . _ 4 .
(2.15) L7¢ = 0, (1+ €2) ;1: (1 1€Cs &Zﬁ;) (192 )

then we have (LT)*(af) € Sr=F(T*U,) for every y € U,, because X is of bounded
geometry and example 2.3c). O]

13
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Now put f¥(x,v) = ¥(x,v)f(exp, v) and calculate

1 —1 T €
Op¢ (an) = W /X o Ve (y)an(z, &) f(y)e e(y,(,8))/ dedy
(2.16) = (2%/ Vo (y)an (z, f)f(y)Lke_is"(y’(“}’@)/sdfdy

(2ne)d / /TX (6/m)e” =L [ (y)alz, € (v)] dédy

which does not depend on k by equality to the first line.

Now |x(&/n)(LT)(af*)| < |(LT)*(af*)| which is an integrable function when

1 —k < —d by lemma 2.6. So we can apply the dominated convergence theorem to find
that the limit for n — oo of the integral equals

1) gyt [ et ) ) ey

and take this as the definition of Op,, (a) f for arbitrary p.
Finally the bounds on the derivatives of a and the fact that f has compact support
ensure that Op,, (a) f € C*(X).

Now that we have shown that I,(z)f makes sense we formally write I,(x,v) for the
(distribution valued) £ integral.

As direct consequences of this definition we can firstly change the order of integration
by

/ ) D (e ) () ddy

/ / et (y:(.8) /E(LT) [wz( ) (x,é)f(y)] ddy
(2.18) Tz X

/ : / SR/ (LT)E [y, (y)a(x, €) ()] dyde
Z/T*X/X@/)m(y)e‘“" v @/ (2, €) f (y)dydé

where the last step is integration by parts in the (absolutely convergent) inner integral.
The iterated integral exists in this order because f and v are smooth with compact
supports whereas a € S* grows at most polinomially. Secondly we can ’integrate by
parts’, i.e. if D = Z;lzl bjO; + ¢; with b; € S% ¢; € S, then as distibutions:

—i(v,6) /e 3¢ _ 1 i{v,€)/e
(2.19) Gre) /;X a(x,€&)De d¢ = Gre)? /;Xe D" a(z, €)d¢

14



2. PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS

The quantisation of a symbol a € S* is called a pseudodifferential operator (of order p),
we denote the space of these operators by W#. This means that the elements of W* are
those linear maps A : C3°(X) — C*°(X) for which there is a cutoff ¢ and a € S* with
A = Opy (a).

U~ is also called the space of smoothing operators because its elements map distri-
butions with compact support to smooth functions. A pseudodifferential operator A is
smoothing if and only if it’s Kernel is smooth with bounded derivatives of any order,
that is Af(z) = [ Ka(z,y)f(y)dy with K4 € C*(X x X). We will prove this in
section 2.3.

Example 2.7.

a) For a € C;°(X) the operator Op,, (a o 7) is just pointwise multiplication by a.

b) The operator associated to a polynomial symbol that is locally of the form a =
D laj<n o (caom) € SN for some functions ¢, € C®(V,) can easily be calculated in

normal coordinates using (%e~"v€)/¢ = 4 g‘a‘ —iv&)/e and integration by parts:
(2.20)
1 .
Op,, (a xr) = —/ / O, Y(x,v ;‘6_””’@/50& x) f(exp, v)dédv
On 0 o) = o [, 3 et (a)Fexp, )
= 3 el F [ S (0ul vl e, )| (5.0
lo| <N
|ex]
= ¥ (ie) el (10
lo| <N

So quantisation of a polynomial symbol defines a differential operator. In particular
for a = &2 we have

220 O ) = =3 (g 5 Tt £0) = == (&= "5 ) st

In these examples the quantisation is independent of the cutoff v». We will now show
that this is true in general, at least up to an error of order =

Proposition 2.8. Let ¢ and 1/; be two cutoff functions as in definition 2.5 and supported
inV, V. Ifa € S*, then Op, (a) — Opj(a) is O(e>) in W™,

Proof. First notice that 1) — vanishes in a neighbourhood of {v = 0}, therefore we have

(222) (w — ’(Z}) (Z ﬂ 0 ) e*i(ﬂ,@/s — (2/} _ 1;)8D€7i< (w 2/}) —i(v,€)/

= U2 3Cm

15



2. PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS

By (2.19) we then have for every k € N
(Opy (a) = Opy () f
B ;/ / 10| (& — )alz, &) f(expv)(eD) e 8 ddy
223)  2re)d Jox Jrex ' : .

gk -
= —Q —i{v,8) /e T\k
- (2me)d /mX /;X 10, (¥ — )e "5 fexp,v) (D) a(x, §)dédv
Now obviously (DT)*a € S#*, so the ¢ integral defining the kernel

(2.24) I,(xz,v) =

1 — () / e~ i€)/% (DT ¥a(x, €)de
TrX

exists in the sense of Lebesgue and defines an n-times differentiable function of v if
p+n—k < —d. The derivatives in z and v of this function are clearly bounded
independently of (x,v) because those of (DT)*a, 1) — 1) and any coordinate changes are.
r\gliloso shows that I,(7, z:(y)) € G;°(X x X) and thus Opy (a) — Op; (a) = O(e*) 151

Remark 2.9. The key point in the proof of the last proposition was that —zﬁ vanishes
near the critical point {v = & = 0} of the phase function ¢. From this we can see
that the properties of I,(x,v) are determined, up to an error of O(¢*), by those of the
integrand in a neighbourhood of this point.

Let us also note that a function w(§) with the same property would have allowed for
introduction of D =" é—igjﬁg and given the same result.

We could even use an ¢ dependent cutoff function . as long as differentiation with
respekt to v does not loose a full order of e, for example if e*9% 1 = O(\/Ek) In the
following we will often use this argument without elaborating on the calculations.

As we have just proven that the dependence of the quantisation on 1 is negligible we will
write Op,, (a) = Op(a) from now on and sometimes adjust cutoff functions as needed.

There is some freedom to choose a different quantisation map than the one defined
in (2.12) and get a slightly different calculus. For example we could have written the y
integral in normal coordinates straight away and without the factor |©,|. In this calculus
the quantisation of £2 is just —e2A. We will see that this difference is irrelevant for the
Egorov Theorem because it is of the same order as the error terms. We have chosen this
version because it behaves well under coordinate changes as we will see in section 2.4.

16



2. PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS

2.3 The Symbol Map

In this section we introduce the symbol of a pseudodifferential operator as the inverse
(modulo &%) of the quantisation map. This is an improvement in comparison with
pseudodifferential calculus defined in local coordinates, where in general only the leading
order o, € S*/SH~! of a symbol can be recovered from the pseudodifferential operator.

Definition 2.10. Let A € U* be a pseudodifferential operator and ¢ a cutoff function.
The -cut symbol of A is the function on T*X defined by

(2.25) oy a(z,§) =A U@m(.)’—l Uy ()] ()
where A acts on the variables denoted by (-).

Theorem 2.11. The map oy : V> — S is the inverse of quantisation up to an error
which s asymptotically close to zero, that is

(2.26) 0y (Op(a)) =a+O0">(E™) and Op(oya) =A+0(E™) in U™

Consequently o is order-preserving and the dependence on 1 is asymptotically close to
zero.

Proof. We first prove that o is the left inverse.
Let A= Op; (a) with a € S*. Note that ¢/ = 11 is also a cutoff function and calculate

1 —1 T € -1 T e
opA(1,§) = W/X/T*Xe e(y,(2.0))/ a(z, OVl (y) |0.(y)| Lo /e e dy

(2.27) = (27T—1€)d/ X/T*X a,(g(;’C)¢’<g;,U)e—i(v’C—@/stdU

1 .
(2me)d / X/*X(l — ¢/ (z,v))a(x, Q)e "9/ d¢du

where we have used the Fourier inversion formula (2.9). To complete the proof we need
to show that the second summand is O~*°(e>). Since (1 — ¢') vanishes near v = 0
we can proceed as in the proof of proposition 2.8 and use the differential operator
D = Zj f}—ivjﬁcj together with integration by parts to improve the decay of a. Now

check that because of (DT)k a = OF7F(e*) the function

= a(x>€) -

—

(2.28) (DT)" a(z,v) := /T*X (DT)ka(x,C)e_i<”’<>/5dC

is rapidly decreasing and (k —d — p — 1)-times differentiable in v. Therefore

o —

b e N DTV . )i v
229) s [ (1= ) (DT o)

17



2. PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS

is convergent and defines a smooth function b for which e=!(1 + £2)!b(z, £) is bounded
when 2l <k —d—p—1,s0 b=0"(e™).

Now by our definition of ¥* every element A € U™ is of the form A = Op,, (a) for some
Y and a € S™. So because o is left inverse we have Op(c4) = Op(a + O~ (™)) =
A+ O(®) in T O

Example 2.12.

a) We have o f ,E)2| - Z'g )(')| because % = 0, so we can calculate the symbol
of the Laplace-Beltrami opérator :
2
_ - €
(230) oye2a(r,€) = a (7 () D] = =2 + ()

from which we see that ad,(Op(ﬁQ)) = £? independently of 1.

b) Let A be a vector field, A, = >, ¢*(y) 2% 7.5 With g* € C>*(U,,) in normal coordinates
centered at z. Let A be the operator given by: Af =iedf(A). The symbol of A is

U¢A X f ZEZQ ()|_ () (:vf))/e}

Lemma 2.13. An opemtor A CP(X) — C®(X) is an element of V= if and only if
Af(x) = [ Ka(z,y) f(y)dy for some K4 € C°(X x X).

(2.31)

Proof. First let A = Op,, (a) with a € S7°. Then

! bn(y)e PO g (1 €)de

(2.32) Ku(z,y) = 2re)i rx

is smooth because a is rapidly decreasing and the bounds on the derivatives can easily
be calculated using those for the derivatives of a, 1,(y) and changes between normal
coordinate charts.

Now let K4 € C;°(X x X). We have
(2.33) oulr,§) = | Kalz,exp, v)¢(z,0)e ) dv
T X
Because ¥ (x,v) has compact support in B,(0,7) we have the estimate

(2.34) |oa(z,&)] < [[Kallo vol B.(0,7)

and similar estimates for the derivatives.
Furthermore we can use (e " v4)/¢ = ie%e*””’@/s together with integration by parts
to see that

) kalal olP!
(2.35) |(1+¢&%) o 8(;,; UA(x &)| < Crap
for every k,a, 3, 80 04 € ST, n

18



2. PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS

2.4 Weyl-Quantisation

In this section we will introduce Weyl quantisation as a tool which directly relates the
observables of classical and quantum mechanics, that are real functions on phase space
and self-adjoint operators respectively.

We also recover the main results of section 2.2 for this quantisation by giving a formula
expressing one quantisation in terms of the other.

Definition 2.14. Let y(t,y) = exp,(tz:(y)) and ®,,(t) : T; X — T, X be parallel
transport along ~y. Define the Weyl quantisation of a € S* by

(2.36)
(Op" (a) f)(a) = / ) D e (3(3,0), B, (1)E) S )y

27T5

[02] e %a (expy (5), Puy (5)€) f¥ (2, v)dEd

*
z

Proposition 2.15. Let a € S*. There is 04 € S* such that Op" (a) = Op(ca) and

vice versa. We call a the Weyl symbol of A = Op(ca) and write a = o .

Proof. Use Taylor’s formula in the normal coordinates around x to see that

ol ol
(2.37) a(v(t,y), Poy(t)§) = Z iy_]z’”(y)accllzo‘

a (y7 (I)x,yg) + N1

o] <N =y
with the remainder
(2.38) v > &l )“/ a a(y, ®,,6)d
. 'N+1 = 777 =V Zz\Y o Y, Pry T
N+ S 0 &l

Next, substitute this expansion for a in (2.36) and use
(2.39) zp(y)%e 1 =WO/E = (ig)mlage—i(zz(y),é)/a
together with integration by parts to get

1 /—ie\ o glal gl
(240) oa(z,&) = Y 5( 2%) aCe dzo

la|<N v

a(y, Peyé) + 1y
y=x

with ryy = OV (M) [s0 b € S* is obvious.
In the other direction just do the same calculation in normal coordinates around 7(%)
and with exp, 5 (—%7 (%)) = x we get

1 lal glal glal
(241) of (z,€) = Z ol (ZQE) oCo dze

la|<N v

(y7 q)ac,yé.) + 'N+1
y=x

19



2. PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS

Example 2.16.

a) The function &2 = g(&,€) is invariant under parallel transport along v, so we have
oW (—gm + %n@)) — o(Op(€2)) = 2.
b) Let A be the operator Af = iedf(A) of example 2.12b), then we have

(2.42)
o (@,6) = — (Au &) — = Z

P (0)Ces (Baf) = — (A &) — = div(A)

Yy=x

T

since 57| (®uy)h = Dh(2) = 0.
¢) From the previous example we can see that

(243) Op (A, €)) f = ~Af — = div(A)f = = (LA(F)] + dF(A))

We get the results 2.8 and 2.26 as corollaries of Proposition 2.15
Corollary 2.17. The dependence of Op" (a) on v is O () in U=,
Corollary 2.18. If a € S° then Op" (a) is a bounded operator on L*(X).

Theorem 2.19. Let a € S*, then 0p" (a)" = 0p" (@) up to an error of O (%) in
U= coming from a change of cutoff.

Proof. In the proof we make use of the following properties of geodesics:

24 )=, (42) e () - ()

(2.45) Dy (%) =0y, (%) P,y (1)

Now let f,g € C5°(X). Keeping in mind the formulas above we change variables with
Dy Ty X — Ty X, & — &, :=n (remember that ® is orthogonal, so it’s determinant
has absolute value 1).

{(g,0p" (a) ) = / g(z)Op" (a) f(z)dx

(2.46) / / T Yoly)a (7(5), ®ya()n) e WD) f(y)dndyde

-1/ [ F00)a G ) e BT o)y
={(0p" (@) g, f)

20



2. PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS

where we have used z,(y) = —z,(x) and the last equality holds if ¢ (z, z,(y)) behaves
like an appropriate cutoff function zﬁ(y, w) at y. To get a ¢ with this property just let
suppt, C Uy, /3, which is a normal coordinate neighbourhood for every y € U, ,, /3 C
Uy2px/3- S0 if we put w = exp,'(z) € B,(0,2px/3) C T,X the function Dy, w) =
¥(x, z;(y)) has the required properties.

]

In this calculation we can see the benefit of defining quantisation in the way we have,
with the functional determinant © in the integral over 7, X. However this is not the only
way of defining a Weyl-quantisation such that this theorem holds, a slightly different
version can be found in the paper by Pflaum [Pfl1].

Remark 2.20. The theorem just proved together with theorem 2.26 shows that if a € S°
is real, then Op" (a) is formally self-adjoint in the sense that Op" (a)* = Op" (a)
in U /U~ For symbols whose quantisations are unbounded the question of self-
adjointness depends on the domains of A = Op" (a) and A* and is far more complicated.
Here we have only shown that A with domain C§°(X) (we will see in section 2.5 that
this is really a domain for A if we choose 9 right) is symmetric. In the case X = R? and
with some additional conditions on a Robert [Rob, chap. 3] proves that A with domain
S(R?) has a unique self-adjoint extension.

2.5 Products of Pseudodifferential Operators and
their Symbols

To prove the Egorov Theorem we will need an expression for the symbol of the com-
mutator [A, B]. For this we need to understand the meaning of the operator prod-
uct on the level of symbols, i.e. we want to find a composition rule '#’ such that
Op(a#b) = Op(a)Op(b).

Now first of all a pseudodifferential operator is a map C3°(X) — C*°(X) so the product
may not even be well defined. If we look at the quantisation formulas (2.12) and (2.36)
we can observe that if for some x € X we have f|y, . = 0 then the integrands are always
zero, so we have Op(a) f(x) = Op" (a) f(x) = 0 for every a € S* if dist(z,suppf) > 7.
Because the support of f is compact it must be bounded, i.e. if we take x € X then
the function dist(x,y) is bounded by a constant C, on suppf. Therefore for y in the
support of Op(a)f or Op" (a) f we have dist(x,y) < C, + r, so these supports are also
compact because X is of bounded geometry. Thus the product is well defined. Let us
now consider the symbol of this product:

0ap(2.€) = [AB (10,()] " (e EDE) ] (a)

2.47 )
(247 A (10 e gt (1, 6))] (2) + O (=)
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where

(2.48) “t(y, (2,8)) = V() |0.(y)] ey, (z.8))/e [B (’@xrl wxew(.,(:cg))/a)] (v)

since 1 — 1), (-) vanishes near the diagonal.

Lemma 2.21. Let a € S* and A = Op(a). Then for any f € C;° the symbol
(249) 0a,4(2,€) = [A(10.()] " wu (Ve f ()] ()

has the asymptotic expansion
olel
a f
I3 ] [azg T

Proof. Using Taylor’s formula and integrating by parts we get

_ie)lal [ glal
(2.50) oaf(z,&) ~ Z (—ie) [8

| (e
a€Nd @ agt

(2.51)
1 .
OA,f (.T, 5) = W /TwX Tex ¢($7 1))61@’570/5&(37, C)f(exp$ U)dCdU

1 .
~ (27 d/*X g Yz, v)e V5 q(z, & + ¢) fexp, v)dvd(

1 olel
27T€ (972 Z ol /*X - U(x,v) f(exp, v)e (/e [ ] dvdC +ry
|<N T x
olal ol
71’ |ev] —i(v,¢)/e
(22) d |E<:N ol /T . f x,v)(ig) 3@0‘6 [8(;} ﬁa] dvd( + ry

\al olel
(2me)d Z a! [8C§
\a| olel olel
_ Z |,
a! ¢ | 0z
with the remainder

_e)N+L 18l
(2.52) rﬂx,@:ﬁ N+1/T*X/ -y

B
(2me)d Pl 0Cx

]/z /* - mJw(ﬂb’ v)d{dv + ry

S

+7"N

T

a
&+in

ity 97
/IX e 8vﬁf (x,v)dvdtdn

The integral defines the value of ry for fixed &, so first let |£] > 1. Split the integral
in ry = Y% 4+ ry X using a cutoff y(n) equal to 1 where |n| < |£/3| and with y = 0 for
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Il = 1£/2].
By the Schwartz inequality and Plancherel’s formula the first part has the bound
(2.53)
N+1| [t alsl Bl
R ea ) P e / (1=1)"x(n) | adt 5o
|B|=N+1 A 0 9 et L2(T3X) v L2(T: X)

where the second expression is clearly bounded independently of x € X. Now for a € S*
and N > p we have by definition

olPl

XM=

(2.54) o0

< Ox(n) (1+ 1€+ )"~ < Ox(m) (1 + €] = )y~

Q

&+in

where the second inequality holds because p — (N + 1) < 0 and || < |¢| on suppy. We
use this to calculate the norm in polar coordinates and get

! L o
/0 (10

z [&+tn

adt < C||x) (1 + fel =
L2(TrX)

S C (1 + ‘Sy)d/QJr,u*(l\H*l)

L2(TrX)

(2.55) ‘

In the second part 7y X we introduce D = 3 & 22 (n )07 k-times and then integrate by

parts. Since N > p we have }8§a| < C and we can use (2.53) and polar coordinates
with s = || to get

o0

1/2
(2.56) ’r]lvfxl < CeN+1-d/2+k (/ Sdl%dS) < CeN+1-d/2+k ’f\d/z_k
|

€l/3

for every k > d/2, so 1y ¥ = O~().

In the case |{] < 1 we choose our cutoff to be 1 for |n| < 1/2 and 0 for |n| > 1. A
calculation similar to the one just carried through then shows that ry is bounded.
Together these two cases prove that |ry| < CeNt1=4/2 (1 4 |¢])* %% and repetition of
these arguments for the derivatives of ry proves that ry is Q(eN+T174/2) in §&/2+n=(N+1)
and the expansion for o4 ;. n

It is important to note that the function o%* appearing in (2.47) depends on &, so merely

taking lemma 2.21 and substituting this for f may not give a proper expansion in powers
of e. To find this we must first expand o%" using essentially the same technique as in
lemma 2.21.

Lemma 2.22. Let b € S* with B = Op(b). Then if we define 0%* : X x T*X — C by

(2.57) 05" (y. (2,€)) = ¥a(y) [Ou(y)| e EDE[B (|0, e EDE)] (y)
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for every a € N% we have the asymptotic expansion

, lal o lal 6. (—ig)lBl=F
(258) 5= - 5 (08) ~ 52 -~ CEDIDY k!
—z =T 56Nd ﬁ B1+..4+Br=
= Iﬁg\>2
ol8l g o
L 5 (,€))
[8@5 dpy ] Hﬁ] [825J Y

Proof. First let us note that differentiation in dy is with respect to the first variable,
that is

(2.59) dp, =) %

in normal coordinates around x and y respectively.
For z,y and ¢ close enough define

(2.60) n(y, 9, (z,€)) = @@, (2,€)) — ¢y, (,€)) = (2(7), dpy)

and take note that n is linear in the & variable and that n(y,y, (z,£)) = 0. Now we
calculate

%) 0zl
(261) 8_ (y7 " (:E,{)) = Z (a_zglj ) - > Cx,j

j Y Yy

which is obviously zero when y = .
Then we write
(2.62) ext(y’ (:L’ 5)) x(y) |@x(y)| [B <|@x|*1 ¢xein(y7'7(x,§))/8ei<2y(')vd@y>/5)} (y)

and proceed with Taylor’s formula as in (2.51) to get
18l
Ui
dipy 3zy
+ RN(ya (.73, 5))

with F(y, -, (z,€)) = 1. (y)ew-@)/e Of course both F and Ry still depend on ¢ so
to complete the proof we must show that this is really an asymptotic expansion.
First use Leibniz’ rule and (2.61) to compute

J
0z

3
0z,

(2.63) o' (y, (2,8)) = y)l Z !

IBI<N

£)l8l [ 18
¢y

F(y7 '7 (x7€>>]

Y

(2.64)
P (—ie)* [aﬁo ] ko [aﬁg ]
- 3 F( ,-,($,§)) = a0 (7(ZL‘,§))
o, il ﬁ%ﬁ;z , KB |0z ve| 11 L 31
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If we evaluate this expression or its derivatives at y = x all the summands with 3y # 0
will be 0 because 1, is equal to 1 in a neighbourhood of x, so this gives exactly the
claimed expansion.

The form of the remainder can be seen from lemma 2.21, but now the estimate of the
term

(2.65) Ha—ﬁ' 2y, VF (3, exp, (), (2, €))
O’ L2(T, X)

depends on £ and e, while the estimate on the part containing b is completely analogous.
In order to compute the order of 0*|,—, Ry we only need to calculate that of expressions
of the form

olel
0z

xT

o8l
0z

(2.66) F(y,- (z,&) = 0"F°

y=x g

and then proceed as in the proof of lemma 2.21. For this we will need the identities

0 olel o
2.67) —— i _ 4 29 9 , _ 0+ 5
260 g wed ) =0 and Go) o e n6) =0 for faf <

that can easily be derived from (2.61) and the formulas for coordinate changes (1.21)
and (1.22).
Now let us consider a single summand S, of 9*F¥. Since 7 is linear in £ it is clear that

i 08
€9z

< Ce ¢

Yy

so if a summand S, of F¥ has m factors with |3,,] = 1, then in the worst case it grows
like (=1 |¢)™ T P=™/2 By (2.67) for Sas coming from derivation of S, to be nonzero
there have to be at least |a1| > 2m derivatives acting on those factors with |5,,| = 1. So
we can have at most ap = @ — v derivatives acting on F. Then the exponent of e~ [¢|
can be at most (|5] +m + as)/2 < (|8] + |a])/2. So if we look at (2.53) we see from
the proof of lemma 2.21 that for every derivative we gain one order in the first part and
loose at most half an order in the second part. Therefore

(2.69) 2—04 Ry = (’)(5(N+1—d—\0f|)/2) in gHt(dtlal-N-1)/2
Za
T ly=

T

]

Theorem 2.23. Let a € S* and b € S”, with A = Op(a), B = Op(b). Then the symbol
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oag of the operator product AB has the asymptotic expansion.

_jgYlal 8=k [ glal
(270) oap~ > > > Z ( gc)y!k! [843 f]

aeNdﬁeNd \ﬁl ﬁ1+| +/3k
ﬁ 1 | 98l
dipy a ﬁ]

ol
0z%

T

Bj|>2
18]
{|@x| lg—cﬁ <x,g>>] }

Proof. To get the form of the expansion we start from (2.47) and use lemma 2.21 where
we insert for 0" and its derivatives the expansion proved in lemma 2.22.

It remains to be shown that the error is really O~>°(¢*>°). Take from the proof of
lemma 2.21 the remainder 7y, 1nsert1ng for f the M-th order expansion (2.63) of o™
The terms (2.64) grow at most like (€7 |£])/#72, so the only problematic term is T’N(RM)
where we need to estimate the order of 0%|,Ry. Now for y # x the argument from the
proof of lemma 2.22 is not valid, but because of (2.67) we can choose a cutoff function

X(x,y), equal to zero away from the diagonal, with

O v )| < e
for |a| < 2.

82’“
We use this to split the integrand in two and get ry = % 47y X with 1y X = O~(£)
since 1 — x© vanishes near the diagonal (see remark 2.9). Then by deﬁmtlon of x© we
get

olal

(2.71) |x*(x, y)aza

olal plsl
2.72 c ———F(y,- < (ledl+181)/2
272) [\ 5 5P (2.0 < (el o)
so we have ry(Ry) = O(eWN+M+2)/2) iy Gutvtd=(N+M+2)/2, u

The expansion just proved clearly defines a symbol that is unique in S*/S™>° so it
gives us the composition rule # known as the Moyal product and S°/S~> as well as
S9/S87°° are Algebras with this product.

Corollary 2.24. The second order expansion of oap s explicitly given by
B (—ig)lel | gl olel
O-AB(I7£>_ Z ol a_ca a Oz b
o <2 £ v le
- e
12 k,lmm aCn 3 aClaCm 13

82 82
+ —
6 kZJ [agkagl ¢

a] b(x, &) Ricy (z) + OFF3(%)
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Proof. The form of the expansion is clear from theorem 2.23, where the order of a
summand is of course |a| + || — k. In order to determine the coefficients we have to
calculate for |af,|5] < 2

o\l olel
a 3 90 Z Cm k

(E

OBl 2k

ywazy

olal
D20

(274) Pap =

:E

Yy=x

From (1.22) we see that @ = 0 when |5] < 2, so the only nonzero coefficients with
k # 0 are

82Zk

a x _ 1 k

ozm

xT

(2.75)

Yy=x

and because RF, = —RF  we have Y, RF, 0™b = 0 which gives us the second
summand. The only case in which 0%|0©,| is nonzero is || = 2 and consequently

|3 = 0. We then have

0210, I 1.
(2 76) azkazl - 6 mzz:l lek kml(x» = _g Rlckl(x)
as calculated in (1.19). O

The ideas of the proofs of this section are all from [Pfl2] but we have corrected a sign
in the estimate (2.54) and the proof of lemma 2.22 is much longer because (2.64) only
holds in the point § = y and not in a neighbourhood as stated in |Pfi2| (otherwise n =0
in this neighbourhood).

2.6 L? bounds for Pseudodifferential Operators

In this section we prove a version of the Calderon-Vallaincourt theorem for the calculus

we have just defined. This will allow us to extend the operators in ¥° to operators on
LA(X).

The proof follows that of Hormander (|Ho6r|, Lemma 18.1.11 and Lemma 18.1.12.)

Lemma 2.25. If K € C(X x X) and

(2.77) sup/ |K(x,y)|de < C sup/ |K(x,y)|dy < C

yeX xeX JX

then the integral operator K with kernel K is a bounded operator on L* (X) with norm
bounded by C'.
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Proof. Let f € L?(X), using Cauchy-Schwarz’ inequility gives us

@%HM@%%LW@y MQ < [ K@l wFdy [ o) a:

so, estimating the last integral by C, we get

<mmAWMWmquAm@mwm%msw/U@my

Theorem 2.26. Let a € S°, then Op(a) is a bounded operator on L*(X).

Proof. For a € S* with u < —d the Operator A = Op,, (a) is an integral operator with
kernel
1

(2.80) Ka(z,y) = 2me)e Jpe x

bo(y)e Pz €)de

and K4 is obviously continuous and bounded by

(2.81) |Ka(z,y)| < o) /T;X C(1+ |&))de < C

Now for n € N, (1 + |exp; ' (y)|*") K a(z,y) (which is well defined because of the cutoff)
is also bounded and continuous since for n =1

(2.82)

(1 +exp;1(y)2)KA(a:,y) _ (ﬁjr(gy))d /*X e—i@(yy(w,ﬁ))/e (a(x7§> + e2 Z@gja(x,§)> d&

J<d

and in general it is the kernel of an operator associated to a symbol in S* consisting of
a and its derivatives.

Therefore K, satsifies the conditions of lemma 2.25 and we have proven that A is
bounded if p < —d.

Next we extend this result to all 4 < 0 by looking at the quadratic form

(2.83) |ASI® = (Af. Af) = (AAf. f) < A A £IP
and observing that the results of section 2.4 imply that A*A € W¥2* and eventually
2% < —d for any pu < 0.

Finally take a € S, M = 2 ||a?||_, and define

1

(2.84) b(z,€) = (M — Ja(z,§)")? € 5°
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since M/2 < (M — |a(x,£)]*) < M and the square root ist smooth and bounded in this
region.

Now the product expansion 2.23 implies that

(2.85) C*C = Op(M — |a(x,€)>) + Ry

and the results ( 2.15, 2.19) of section 2.4 show that

(2.86) Op(la(z,€))*) = A*A + eR,

with Ry, Ry € ¥~!. Consequently R = R; + R, is bounded because it is in W—!. This
gives us the estimate for the norm of A

(2.87) [JAfI* < (A"Af, )+ (C*Cf, f) < (M +<||RI) | £II°

29



3 The Egorov Theorem

3.1 Proof of the Egorov Theorem

In the previous sections we have established a correspondence between classical and
quantum mechanical observables through the Weyl calculus. Here we want to use this
to show that the respective time evolutions of these observables differ only by a small
amount when ¢ is small.

By the standard theory of ordinary differential equations the Hamiltonian vector field
Xy = —{h, -} generates a local flow ¢, : T*X — T*X. This means that there is " > 0
such that for ¢ € [0,7] the solutions of the Liouville equation $a = Xy(a) are given by
a(t) = ao ¢.

A self-adjoint operator H generates a strongly continuous unitary group U(t) = e
this means that the solutions of the the Schrodinger equation (1.2) are ¢(t) = U(t)y
where ¢y € D(H) is the initial state. The Heisenberg equation (1.3) for the observables
is then solved by A(t) = U*(t)AU(t). We want to compare this time evolution to the
classical flow ¢; via the quantisation and symbol maps. Since it is determined by the
commutator [H, A] we start by calculating the corresponding symbol O'[VX H]

—iHt/e
Y

Lemma 3.1. Let a € S*, b€ S” and A = 0p" (a), B = 0p" (b). Then we have
O-[VX,B} (ZL’, 5) =ie {CL, b}

g2 d3ab
+ — Rf,m x)Cy,
(3.1) 12 k;m,n l( ) kagw,magzmagm,l

e 0%a 92b
— 1 _ ut+v—37_3
T kZ,ZRIC’“’(x) (bacz,kacx,l aacm,kacx,l) O

where {-,-} is the Poisson-bracket induced by the canonical symplectic form on T*X.

Proof. We use the expansion (2.73) for 045, get the Weyl symbol from proposition 2.15
and then calculate oty 5 = ofy — off,. Here it is important to note that any expression

appearing in o'/ that is invariant if we swap a and b will dissapear in O[VX B
Let o and § be the multiindices of theorem 2.23 and + that of proposition 2.15. The
the zeroth order expression corresponds to |a| = 5] = |y| = 0, so it is equal to o40p
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3. THE EGOROV THEOREM

and clearly dissapears in 0&/731. Now to first order in o'/ we have the cases |a| = 1,
18] =7yl =0and |y[ =1, |B| = |a] = 0 and get

, 1 0 Oosop Ooa Jop i€
(3.2) ie (Z 590, 0%k 90, Oz’f) =3 {oa,08}
k > x Z, x

and use o4 = a — %Q@za + OF=2(£?) to find

2

(3.3) %{UA,UB} = {a b} + — ({aca a,b} + {a, 9:8.b}) + O*+~ 3(c3)
From this we already see that the first order expansion is given by
(3.4) U[A g = ief{a, b} + OFFr=2(2)

To find the expressions of order 2 we proceed as above and start by calculating the

expressions for § = 0 and different o and ~.
0? 0’040

2
9
4 ; 00 1OCo s, D2LO2E

(3.5) ol =0, |y[ =2

which is of course symmetric in a and b.

2 0’04 O%0p
. =2 =0: ——
(36) la] =2, 17| =0: -5 %j 5. ¢ D0

aO'A 803
al=1, 1y =1: Z%kaz (%J M)

0 80,4 0 803 820',4 820'3
9 Z k I T [k
(37) 8zx GCN 8293 8@7,{ 8Cx,18(x7k 8zx82x
sym?nretric negativ;:Jf (3.6)
n 0 0 Oous| Oog Oos O 0 Oop
0Cey |O0Ce 02k | 028 0zL 0zL | 0(, 02K
As we can see from (2.73) the terms with |3| # 0 are just those in the second order
expansion of o4p that contain the curvature. Now we use 04 = a + O* !(g) and
caleulate oy 5 = oip — of4. The last two summands of (3.7) combined with their

counterparts from o, exactly cancel with the €% part of (3.3), so the only remaining
summands of order €2 are those containing the curvature. They can be simplified to
those of (3.1) using the symmetries of R, . O

Theorem 3.2. Let h € S* with H = Op" (h) self adjoint and U(t) := e~"/5. Let ¢,,
t €10, T] be the Hamiltonian flow generated by h. If a € C3°(T*X) then

(3.8) U0 0p" (@) U(t) — 0" (a0 81)|| o)) < Cr (2 IR +7)
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where

(3.9) |R|| = sup max |Ry,,(z)|
zeX klm,n

Proof. Define A(t) = U*(t)Op" (a) U(t) and A, = Op" (a o ¢;) and check that

(3.10) d (Acf) = OPW <%[a o ¢t]> [= OPW (—={h,aopi}) f

dt
because a has compact support, and that

(B.11) SAWF = LIH AW = LU0 [H, A0 U

when f € D(H), which is just the property of the unitary group. We use this together
with the expansion U[VIZ,AH] =ie{h,ao ¢y .} +e%r(t — 1) + 3¢(t — 7) from lemma 3.1
to calculate for f € D(H)

A(t) — A f = /—U* )A,_U(r) fdr
(3.12) _ /O U*(r )< (H, A, ]+ Op" ({h,aoqﬁt_T})) U () fdr
= —/O U*(r)Op" (57"(75—7)—1—526(15—7')) U(r)fdr

Now because a has compact support so does a o ¢y, so r(t) and ¢(t) are in S~ for every
t <T. The dependence of these remainders on ¢ is obviously continuous. Since D(H) is
dense in L?(X) we can estimate the norm

(3.13)

[A(E) = Aell g z2(x)) < CT s[up ( ||Op Hz: L2(X +52 HOP Hc L2( )))

This gives us (3.8) if we take into account the dependence of r on the curvature from 3.1.
O

Remark 3.3. We see that the approximation is of order €2 if R = 0. If X is not flat there
cannot be a second order approximation of U by a Hamiltonian flow since the remainder
r contains derivatives of the observable a of order greater than one and therefore the
map X (a) = {h,a} + er does not satisfy the Leibniz rule and is consequently not a
vector field.

Remark 3.4. The condition a € C{°(T*X) is of course very restrictive. From the proof
we can see that the Egorov Theorem will hold for h € S¥*, a € S¥ with p+v —2 <0 if
we can prove a o ¢; € S¥ and (3.10). This of course depends strongly on h.
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3. THE EGOROV THEOREM

Remark 3.5. We would like to emphasise that the growth of A(t) — A; is not linear in
time because the remainders depend on a o ¢; and it’s derivatives. To get an estimate
on the time dependence of the error one needs additional assumptions on h to prove
bounds for ¢, and it’s derivatives. If all the relevant derivatives of ¢; can be bounded
by ! the error is bounded by eT'Ce” so the approximation is valid up to times of the
order of the Ehrenfest time —loge. Estimates of this kind are proved for Hamiltonians
growing at most quadratically in ¢ in [BGP| and [BR].

3.2 Example: Constraint Quantum Dynamics

In this section we will apply the Egorov Theorem 3.2 and the pseudodifferential calculus
developed in chapter 2 to a recent result by Teufel and Wachsmuth [WT] on the dynamics
of quantum systems constrained to submanifolds.

Let (M, g) be a Riemannian mainfold of bounded geometry and consider the
Schrodinger equation with the Hamiltonian H = —A + V.. Let V. be a potential that
localises a certain class of states in an e-tube around a submanifold X C M. If X is
also of bounded geometry and the embedding X — M has bounded derivatives of any
order, then under suitable assumptions on V. the result [WT, theorem 1] is that we
can equip X with an effective metric G.g and define an effective Hamiltonian H.g with
D(He) C L*(X) (with measure induced by Geg) such that the effective time evolution
e~ eat/s on X is a good approximation of the original one in the following sense: there is
a mapping U satisfying UU* = 1 from a space of suitable initial conditions Hy C L?(M),
with associated projection Py, to L?(X) so that

(3.14) ||[e "= — UreHert/oU] P , < Cte?

HE(LZ(M

The effective Hamiltonian is:

(3.15) Herf = —€* [Agq +i(d"A(z)) — A*(2)] [ — 2ie’Gen(A, df) + Eo(z) f

The objects in this equation are:

e the effective metric
(3.16) Geg =G +¢B

where (G is the metric induced on X by g and B : TM x TM — R is a symmetric
bilinear map depending on the second fundamental form of the embedding X —
M. It is with respect to this metric that the objects in (3.15) are to be understood.

e the connection 1-form A of the generalised Berry connection (see [WT, theorem
2| for a definition).
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3. THE EGOROV THEOREM

e the codifferential operator d* which on 1-forms is defined by

(3.17) /X fd* A= /X Gerr(A, df)

for every function f € C5°(X).

e the effective potential E, that also accounts for the energy of the motion in the
direction normal to X.

Now suppose Heg € U2 Then we can use the pseudodifferential calculus on (X, Geg) to
determine the Weyl-symbol heg = 0"V (Heg) as in the examples 2.12 and 2.16. We get:

o o[—eAg,0](2,6) = Gen(§,€) — Sr(x) = € + O°(?) = oV [-Ag,,] (2, €)
e d*A and A? are multiplication operators, so they are equal to their symbols.

o 0icGen( A, d)](x,&) = —Ger(A, &) by a calculation similar to that of
example 2.12b) and 0" [icGe(A, d)] (z,§) = —Ger(A, §) — Ed* A

Adding these up we get

2

heit(,€) = €2 + 2:Gop(Al), €) + e2A2(z) + Eolz) — %ff(x)
= (& +cA(2))” + Eo(z) + O°(e?)

(3.18)

which is the classical Hamiltonian for a particle interacting with a potential Fy(x) and a
weak magnetic field B = ed A. Tt is in S? if E and the components of A are in C;°(X).
Now we can apply the Egorov Theorem 3.2 and get:

Corollary 3.6. Put hjy = £ + Eo(x) and let a € C*(T*X). If h)y € S?, then Ey(x)
and its derivatives are bounded and the flow ¢? erists globally in time. By (3.14) and
the Egorov Theorem we have for all t <'T

(3.19) || Py [eth/EU*OpW (a) Ue ™= — U 0p™ (ao¢?) U]

P0H£(L2(M)) < Cre

Proof. To see that ¢} exists globally start with some initial value (x,¢) and write the
differential equations in normal coordinates at z:

dz*

dt = 2Cx,k
(3.20) dCor OBy

dt — 0zk

Because Ej and its derivatives are bounded there is a Lipschitz constant for the right
hand side that does not depend on the point (z,¢). The Picard-Lindel6f theorem then
gives existence of ¢? up to a time T which is also independent of (z,£). We can now
apply the same argument to the initial value ¢%(z,&) and see that ¢Y must exist for
every t > 0.
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To complete the proof observe that Op" (a o ¢)) approximates eeat/Op" (q) e~*ent/e

up to order ¢ by the Egorov Theorem 3.2 and that this still holds after applying U Fy and
PyU* because their norm is 1. The unitary groups e’/ and ¢1*/¢ are close by (3.14)
and Op" (a) is a bounded operator so we can deduce the result with a standard 3e-
argument. O

Since the error in 3.6 is of order € we could also have used the induced metric G instead of
G for quantisation without changing the result. The case where we can see additional
geometric effects, like the Berry connection and the correction to the metric, in the
semi-classical approximation is when the induced metric is flat.

Corollary 3.7. Let hey € S? and ¢S be the flow generated by this function (which exists
globally in time). Let a € C§°(T*X) and assume the induced metric G on X to be flat,
then for all t <T

(3.21) || Py [eth/EU* Op" (a) Ue s — U* Op" (a0 ¢f) Ul ) < Cre®

PO“[:(H(M)
Proof. 1f G is flat, then the curvature of Geg is of order €, so in (3.8) the curvature terms

in the error are of order £2. The arguments used in the previous corollary then prove
the result. O]

These corollaries show that there is a class of observables on M, namely those that are
equal to PyU*Op" (a) UP, for a € C°(T*X), that behave in this sense semi-classically
as ¢ — 0. A more detailed discussion of semi-classical observables on the different spaces
for the case M = R%, X = R%* can be found in [Teul.

35



Bibliography

[BGP] D. Bambusi, S. Graffi, and T. Paul. Long time semiclassical approximation of
quantum flows: A proof of the ehrenfest time. Asymptot. Anal., 21:149-160,
1999.

[BGV] N. Berline, E. Getzler, and M. Vergne. Heat Kernels and Dirac Operators.
Grundlehren der mathematischen Wissenschaften. Springer, 1992.

IBR| A. Bouzina and D. Robert. The long time semiclassical egorov theorem. Duke
Mathematical Journal, 111:224-252, 2002.

[dC] Manfredo Perdigao do Carmo. Riemannian Geometry. Birkhauser, 1992.

[EZ] Lawrence C. Evans and Maciej Zworski. Lectures on semiclassical analysis. Lec-
ture Notes, 2003. Available at http://math.berkeley.edu/ zworski/.

[Fra| Theodore Frankel. The Geometry of Physics. Cambridge University Press, 1997.

[GS] Alain Grigis and Johannes Sjostrand. Microlocal Analysis for Differential Oper-
ators. London Mathematical Society Lecture Note Series. Cambridge University
Press, 1994.

[Hor| Lars Hormander. The Analysis of Partial Differential Operators I11. Grundlehren
der mathematischen Wissenschaften. Springer, 1985.

|[Jos| Jiirgen Jost.  Riemannian geometry and geometric analysis. Universitext.
Springer, fourth edition, 2005.

[Mar| André Martinez. An Introduction to Semiclassical and Microlocal Analysis. Uni-
versitext. Springer, 2002.

[Pfl1] Markus J. Pflaum. A deformation-theoretical approach to weyl quantization on
riemannian manifolds. Letters in Mathematical Physics, 45:277-294, 1998.

|Pfl2] Markus J. Pflaum. The normal symbol on riemannian manifolds. New York
Journal of Mathematics, 4:97-125, 1998.

|PU| T. Paul and A. Uribe. The semi-classical trace formula and propagation of wave
packets. Journal of Functional Analysis, 132:192-249, 1995.

36



BIBLIOGRAPHY

[Rob|

|Saf]|

[Sch]

[Shu]

[Teu]

[WT]

[Zel]

Didier Robert. Autour de I’Approzimation Semi-Classique. Progress in Mathe-
matics. Birkhauser, 1987.

Yuri Safarov. Pseudodifferential operators and linear connections. Proceedings
of the London Mathematical Society, 3:97-125, 1998.

Roman Schubert. Upper bounds on the rate of quantum ergodicity. Annales
Henri Poincaré, 7:1085-1098, 2006.

M.A. Shubin. Spectral theory of elliptic operators on non-compact manifolds.
Asterisque, 207:35-108, 1992.

Stefan Teufel. Adiabatic Perturbation Theory in Quantum Dynamics. Lecture
Notes in Mathematics. Springer, 2003.

Jakob Wachsmuth and Stefan Teufel. Effective hamiltonians for constrained
quantum systems. arXiv:0907.0351v3 [math-ph], 2009.

Steve Zelditch. Quantum ergodicity and mixing of eigenfunctions. Article
for the Elsevier Encyclopedia of Mathematical Physics, 2005. Available at
http://mathnt.mat.jhu.edu/zelditch /Preprints/preprints.html.

37



Index of Notation

Symbol Explanation Page
N natural numbers including 0
X connected Riemannian manifold of bounded geometry

with metric ¢ and dimension d
TX, T"X tangent and cotangent bundle of X 5
Px injectivity radius of X 5
B,(0,7) open ball of radius r around 0 € T, X 5
Us,r neighbourhood of radius r of x € X 5
Ry coefficients of the curvature tensor 7
Ricy, coefficients of the Ricci tensor 7
K scalar curvature 7
C>(X) smooth functions X — C
C*(X,R) smooth functions X — R
Cs(X) smooth functions with compact support
CH(X) k-times continuously differentiable functions

with bounded derivatives 6
S(R?) Schwartz functions on R?
L*(X) square integrable functions X — C 5
SH(T*X)(= S*) symbols of order u 10
Op(a) quantisation of a 12
Op" (a) Weyl-quantisation of a 19
UH(X) quantisations of symbols of order 14
oA symbol of A 17
oV Weyl-symbol of A 19
OH (k) order e* in S 11
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