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1. Introduction

A partial differential equation (PDE) is an equation whose ‘unknown’ is a function u,
and in which (partial) derivatives of that function appear. This is similar to an ordinary
differential equation (ODE) but the difference is that the unknown function

u : Rd → R (or C)

depends on more than one variable, d ≥ 2, and derivatives in different directions play
a role. Such equations, or systems of equations, arise in many contexts mathematics
and applications in physics, engineering, and the sciences – such as electrodynamics,
quantum mechanics, dynamics of weather and climate, and the description of materials.

1.1. Examples
1. The heat equation

∂tu(t, x) = ∆xu(t, x) (1.1)

describes diffusion of heat in a (homogeneous, isotropic) medium.

2. Schrödinger’s equation

i∂tψ(t, x) = −∆xψ(t, x) + V (x)ψ(t, x) (1.2)

describes the wave-function of a quantum particle in an external potential V .

3. The Poisson equation
∆u(x) = ρ(x) (1.3)

gives the electric potential generated by the (static) charge distribution ρ. Maxwell’s
equations give a more complete description of electrodynamics.

4. The Euler equation{
∂tv(t, x) + v(t, x) ·Dxv(t, x) + gradx p(t, x) = 0

divx v(t, x) = 0
(1.4)

describes the velocity field v : Rd → Rd and pressure p : Rd → R of an incompress-
ible, inviscid fluid. Similar systems, like the Navier-Stokes equations, are used to
model the dynamics of fluids and gases with different properties, e.g. water waves
or atmospheric currents.
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1.2. Linear PDEs with constant coefficients and the Fourier transform

5. The Cauchy-Riemann equations{
∂xu(x, y) − ∂yv(x, y) = 0
∂yu(x, y) + ∂xv(x, y) = 0

(1.5)

are satisfied by the real and imaginary part of every holomorphic function f =
u+ iv : C ∼= R2 → C.

1.2. Linear PDEs with constant coefficients and the Fourier
transform

Let α ∈ Nd
0 be a ‘multi-index’ and set

∂α := ∂|α|

∂α1
x1 · · · ∂αd

xd

, (1.6)

where |α| = ∑d
j=1 αj . That is, αj is the number of partial derivatives in direction j and

|α| is the total number of derivatives. Since for u ∈ Ck(U,Cn) the partial derivatives
can be taken in any order, we can thus express the tensor Dku by

(Dku)j1,...,jk
= ∂ku

∂xjk
· · · ∂xj1

= ∂αu (1.7)

where αi is the number of partial derivatives taken in the i-th direction, and |α| = k.
Note that we have the generalised Leibniz rule

∂α(fg) =
∑
β≤α

(
α
β

)
(∂βf)(∂α−βg), (1.8)

where β ≤ α if β ≤ α if βj ≤ αj for all j = 1, . . . , d, and the binomial coefficients are
generalised as (

α
β

)
=

d∏
j=1

(
αj

βj

)
. (1.9)

Definition 1.1 (Linear PDE). A PDE is called (inhomogneous) linear PDE of order k
if it has the form ∑

|α|≤k

aα(x)∂αu = f(x), (1.10)

where aα : Rd → Cn×n, for |α| ≤ k, and f : Rd → Cn. The functions aα are called the
coefficients, and the PDE is called homogeneous if f = 0.

Question 1.2. Which of the examples in Sect. 1.1 are linear (in-) homogeneous PDEs?
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1. Introduction

A particularly simple case of linear differential equations are those with constant coeffi-
cients, where the functions aα(x) ≡ aα are independent of x. These can be transformed
into simpler equations by the Fourier transform. Recall that for f ∈ L1(Rd) this is
defined as

f̂(p) = (Ff)(p) = 1
(2π)d/2

∫
Rd

e−ip·xf(x)dx. (1.11)

Formally, we have with pα = ∏d
j=1 p

αj

j

pαf̂(p) = 1
(2π)d/2

∫
Rd
pαe−ip·xf(x)dx

= 1
(2π)d/2

∫
Rd

(−i)−|α|(∂α
x e−ip·x)f(x)dx

!= 1
(2π)d/2

∫
Rd

(i)|α|(−1)|α|e−ip·x∂α
x f(x)dx

= (−i)|α|∂̂α
x f(p),

but the integration by parts (without boundary terms!) in the penultimate step certainly
needs justification.

If we accept this identity, the linear PDE of Def. 1.1 becomes after transformation( ∑
|α|≤k

aα(ip)α
)
û(p) = f̂(p). (1.12)

Any solution then satisfies, formally,

û(p) !=
( ∑

|α|≤k

aα(ip)α
)−1

f̂(p).

As the Fourier transform can be inverted, this solution should even be unique. However,
since the function on the right hand side may be singular, it is not clear if we can really
apply the inverse Fourier transform, and in what sense this yields a solution.

1.2.1. The Fourier transform on S

A good framework to consider identities such as (1.12) is the space of Schwartz functions,
where we can

• differentiate

• multiply by polynomials

• define the Fourier transform and its inverse.

Recall (Fourier analysis):
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1.2. Linear PDEs with constant coefficients and the Fourier transform

Definition 1.3. The Schwartz space is

S (Rd) :=
{
f ∈ C∞(Rd)

∣∣∣∀α, β ∈ Nd
0 : sup

x∈Rd

|xα∂β
xf(x)| < ∞

}
. (1.13)

A sequence fn, n ∈ N in S converges to f ∈ S iff

∀α, β ∈ Nd
0 : lim

n→∞
∥fn − f∥α,β = 0, (1.14)

where
∥f∥α,β := sup

x∈Rd

|xα∂β
xf(x)|. (1.15)

A map T : S (Rd) → X into a metric space X is continuous iff T is sequentially
continuous, that is, if for every sequence fn converging to f ∈ S (Rd)

lim
n→∞

Tfn = Tf (1.16)

converges in X.

Question 1.4. Which of the following functions are elements of S (R)?

1. x 7→ cos(x),

2. x 7→ cosh(x)−1 = 2(ex + e−x)−1,

3. x 7→ e−|x|,

4. x 7→ e−|x|2 .

The following proposition from Fourier analysis justifies the calculations leading to (1.12).

Proposition 1.5. The formula (1.11) defines a linear and continuous map

F : S (Rd) → S (Rd), f 7→ f̂ .

This map is invertible, with inverse

F −1f(x) = 1
(2π)d/2

∫
Rd

eip·xf(p)dp.

Moreover, the identities

∂α
p f̂(p) = (−i)|α|x̂αf(p) and ∂̂α

x f(p) = i|α|pαf̂(p). (1.17)

hold.
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1. Introduction

Example 1.6. Let z ∈ C, f ∈ S (Rd) and consider the linear PDE
(∆ + z)u = f. (1.18)

Assuming that u ∈ S , we can take the Fourier transform and obtain
(−p2 + z)û(p) = f̂(p). (1.19)

If z ∈ C \ R+, then −p2 + z ̸= 0, and
û(p) = (−p2 + z)−1f̂(p) ∈ S . (1.20)

In this case, the unique solution u ∈ S (Rd) to (1.18) is given by
u(x) = F −1(−p2 + z)−1f̂ . (1.21)

Uniqueness holds only with the requirement that u ∈ S . Without this hypothesis, we
can add any solution v of the homogeneous equation

(∆ + z)v = 0, (1.22)
for example v± = e±

√
−zx for d = 1, z ̸= 0. Note that these solutions are not elements

of S , as they do not decay for |x| → ∞!
If z ∈ R+ the situation is more complicated as −p2 + z is not smoothly invertible, but

if f̂ has the same zeros the solution might still be an element of S .
Example 1.7. (The heat equation on S ) If we take the Fourier transform of the heat
equation

∂tu = ∆u (1.23)
in both t and x, we obtain

(iτ + p2)Ft,xu = 0. (1.24)
In the best case this would tell us that u = 0 (though this is not clear since the multiplier
vanishes at (τ, p) = 0). However, the equation is an evolution equation and S (R × Rd)
is not a natural space for the solutions. Indeed, u ∈ S (R × Rd) would mean that
u(t, x) → 0 for t → ±∞, but instead of this restriction we should rather specify initial
data, as for ODEs.

If we only take the Fourier transform in x, we obtain
∂tû(t, p) = −p2û(t, p). (1.25)

If we fix an initial condition û0(p) = û(0, p) ∈ S (Rd) the equation is an ODE initial
value problem for every p. The unique solution is

û(t, p) = e−p2tû0(p), (1.26)
and for every t ≥ 0 this is again an element of S (Rd). With this we can see that there
exists a unique function

(t, x) 7→ u(t, x), u ∈ C1((0,∞) × Rd,C), u(t, ·) ∈ S (Rd) (1.27)
satisfying the heat equation (1.23) and such that

lim
t→0

u(t, ·) = u0 (1.28)

in S (Rd) (Fourier analysis).
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1.2. Linear PDEs with constant coefficients and the Fourier transform

1.2.2. Tempered distributions
Our examples show that the framework of Schwartz functions is useful to prove the-
oretical results on PDES (existence, uniqueness), and also to obtain explicit formulas
for solutions. However, it is quite restrictive, since e.g. for the heat equation we had
to assume that u0 ∈ S . We can extend these considerations to a much more general
framework by duality.

Definition 1.8. The space S ′(Rd) of tempered distributions on Rd is

S ′(Rd) = {φ : S (Rd) → C linear and continuous}. (1.29)

A sequence φn, n ∈ N is called convergent (in the distributional sense) to φ ∈ S ′(Rd) if
for all f ∈ S (Rd)

lim
n→∞

φn(f) = φ(f).

The corresponding topology is the coarsest topology such that φ 7→ φ(f) is continuous
for all f ∈ S (Rd).

Remark 1.9. Since φ ∈ S(Rd) is linear, continuity is equivalent to continuty in f = 0,
since if fn → f in S , then fn − f → 0, and

lim
n→∞

φ(fn) = φ(f) ⇔ lim
n→∞

|φ(fn) − φ(f)| = lim
n→∞

|φ(fn − f)| = 0. (1.30)

Question 1.10. Which of the following formulas define a tempered distribution on R?

1. f 7→ f ′(0),

2. f 7→
∫
f2(x)dx,

3. f 7→
∫
e

√
1+x2

f(x)dx,

4. f 7→
∫

|x|f(x)dx.

Example 1.11. Let g ∈ Lp(Rd), p ≤ ∞ then

f 7→ φg(f) =
∫
Rd
g(x)f(x)dx (1.31)

defines an element of S ′(Rd). It is clearly linear, and to see that it is continuous note
that for 1

p + 1
q = 1 we have∫

|f(x)|qdx =
∫

(1 + x2)−d((1 + x2)d/qf(x)|
)qdx

≤
( ∫

(1 + x2)−d
)

sup
x∈Rd

|(1 + x2)df(x)|q

≤
( ∫

(1 + x2)−d
)( ∑

α=2d

∥f∥α,0
)q
. (1.32)
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1. Introduction

Thus, if fn → 0 in S , then by Hölder’s inequality

|φg(fn)| ≤ C∥g∥p

∑
α=2d

∥fn∥α,0 → 0, (1.33)

so φg is continuous.

Many other classes of functions can be identified with tempered distributions by this
formula.

Definition 1.12. A distribution φ ∈ S ′(Rd) is called a regular distribution if there
exists g ∈ L1

loc(Rd) such that φ = φg, i.e.,

∀f ∈ S (Rd) : φ(f) =
∫
Rd
g(x)f(x)dx. (1.34)

Proposition 1.13. Let φ = φg be a regular distribution then g is unique. That is, if
h ∈ L1

loc(Rd) is such that φ = φh, then h = g almost everywhere.

Proof. We have to show that

∀ ∈ S (Rd) :
∫
g(x)f(x)dx =

∫
h(x)f(x)dx =⇒ g = h a.e.. (1.35)

By additivity in in g, h we may consider η = g − h and show that φη = 0 implies η = 0
a.e.. By choosing f of compact support, we may assume that η ∈ L1, without loss
of generality. Now let (χn)n∈N ⊂ C∞

0 (Rd) be a smooth approximation of the identity
(see [FA, Definition 3.5.2]). By hypothesis, for every x ∈ Rd

χn ∗ η(x) =
∫
η(y)χn(x− y)dy = φη(χn(x− ·)) = 0. (1.36)

On the other hand, by [FA, Cor.3.5.1], χn ∗ η converges to η in L1, so η = 0 in L1 and
thus almost everywhere.

Because of this uniqueness, we will often say that g ∈ S ′, even though strictly speaking
it is φg ∈ S ′, with g 7→ φg an anti-linear and injective map. However, there are also
tempered distributions that are not functions, such as the Dirac distribution

δa(f) = f(a). (1.37)

These are sometimes written to resemble the formula for φg, e.g., one writes

δa(f) =
∫
δ(x− a)f(x)dx. (1.38)

Note that this defines the “δ-function” δ(x− a).
We can extend many (linear) operations on S to S ′ by duality, i.e. taking the

transpose.
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1.2. Linear PDEs with constant coefficients and the Fourier transform

Proposition 1.14. Let T : S (Rd) → S (Rd) be linear and continuous. There exists a
unique linear continuous map

T ′ : S ′(Rd) → S ′(Rd) (1.39)

such that for all φ ∈ S ′(Rd) and f ∈ S (Rd)

(T ′φ)(f) = φ(Tf).

Proof. Clearly the duality formula defines a map T ′ : S ′(Rd) → S ′(Rd), as f 7→ φ(Tf)
is linear and continuous by composition. The map T ′ is linear since

(T ′(aφ+ bψ))(f) = aφ(Tf) + bψ(Tf) = a(T ′φ)(f) + b(T ′ψ)(f). (1.40)

To keep it simple, we prove only sequential continuity of T ′ (the general case requires
a better characterisation of the topology on S ′). Assume limφn(f) = φ(f) for all
f ∈ S (Rd) holds for a sequence (φn)n∈N. Then

lim
n→∞

T ′φn(f) = lim
n→∞

φn(Tf) = φ(Tf) = T ′φ(f), (1.41)

so T ′ is sequentially continuous.

Examples 1.15.

a) Fourier transform F . For g ∈ S (Rd) we have

((F −1)′φg)(f) = φg(F −1f) =
∫
g(x)(F −1f)(x)dp Parseval=

∫
ĝ(p)f(p)dp = φĝ(f),

(1.42)
so the action of (F −1)′ on S ′ extends the one of F on S . We will also denote this
by

(F −1)′φ = Fφ =: φ̂. (1.43)

b) Derivative: For any α ∈ Nd we have (∂α)′ : S ′(Rd) → S ′(Rd) linear and continuous.
In this way we can define derivatives of all tempered distributions, in particular all
L2-functions.

c) Multiplication by a monomial: In this case we have (xα)′φg = φxαg =: xαφg.

d) Convolution with a Schwartz function. For fixed g ∈ S (Rd), the map

f 7→ g ∗ f (1.44)

is linear and continuous on S (Rd). It thus extends to S ′(Rd). For suitable h, the
formula

(g∗)′φh(f) = φh(g ∗ f) =
∫
h(x)

∫
g(x− y)f(y)dydx = φh∗Cg(f) (1.45)

holds with Cg(x) := g(−x). We thus define the convolution of g with φ ∈ S ′(Rd) as

g ∗S ′ φ := (Cg∗)′φ(f). (1.46)
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1. Introduction

Definition 1.16. Let α ∈ Nd. The α-th distributional derivative on S ′(Rd) is defined
as (∂α)S ′ := (−1)|α|(∂α)′.

Remark 1.17. The definition of (∂α)S ′ ensures that its action is compatible with the
usual derivative and integration by parts: For g ∈ S (Rd)

((∂α)S ′φg) (f) =
∫
g(x)(−1)|α|∂α

x f(x)dx =
∫

(∂α
x g) (x)f(x)dx = φ∂αg(f). (1.47)

For this reason we will not distinguish (∂α)S ′ from the usual derivative by the notation.
The distributional derivative is a local operation: Let φ ∈ S ′ have support in the open
set Ω ⊂ Rd (i.e.: supp f ⊂ Ωc =⇒ φ(f) = 0), then supp ∂αφ ⊂ Ω.

Also note that

(F∂αφ)(f) = φ
(
(−1)|α|∂αF −1f

)
= φ

(
F −1(−i)|α|pαf

)
=
(
(−i)|α|pαFφ

)
(f),

(1.48)

where multiplication by pα is defined as M ′
pα .

1.2.3. Elliptic PDEs and Sobolev spaces
We can now solve equations such as

(∆ + z)u = f

even with f ∈ S ′ by the Fourier transform method (cf. Example 1.6). However, at first
we only know that the solution u is an element of S ′. We do not, for instance, have a
criterion that tells us if u ∈ Ck and we have found a classical solution.

It is thus important to investigate further these (distributional) solutions. For a special
class of constant coefficient linear PDEs, called elliptic this can be done quite easily and
the regularity of solutions is described precisely by the Sobolev spaces.

Definition 1.18. Let
P =

∑
|α|≤k

aα∂
α (1.49)

be a constant-coefficient differential operator of order k. The symbol of P is the function

σP (p) :=
∑

|α|≤k

aα(ip)α.

Since
FPu = σP Fu, (1.50)

we can solve PDEs as in Example 1.6 if σP is invertible for every k. However, the regu-
larity can still be difficult to analyse. The following condition simplifies this enormously:

Definition 1.19. A constant-coefficient differential operator of order k is called uni-
formly elliptic if there exists c > 0 so that for all p ∈ Rd∑

|α|=k

aα(ip)α ≥ c|p|k. (1.51)
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1.2. Linear PDEs with constant coefficients and the Fourier transform

We note that this can only hold if k = 2m is even, and only concerns the terms of the
highest order in P . The terminology comes from the second order case, where the the
condition means that the level sets of σP are ellipses.

We will now focus on the simplest elliptic operator P = −∆, σP (p) = −(ip)2 = p2.
With some care, results for the general case can be obtained by the same arguments.
Our goal is to show that if u is a solution to

−∆u = f (1.52)

and f ∈ Cm, then u ∈ Cn for an appropriate n (which will depend on the dimension).
Since our method relies on the Fourier transform and this is naturally defined in S ,

S ′ and not Cm, we first need to study subspaces of S ′ that classify the regularity of
distributions.

Definition 1.20. Let s ∈ R. The Sobolev space of order s is the space

Hs(Rd) :=
{
φ ∈ S ′(Rd) : φ̂ is regular, and (1 + | · |2)s/2φ̂ ∈ L2(Rd)

}
(1.53)

with the norm
∥φ∥Hs =

∥∥∥(1 + | · |2)s/2φ̂
∥∥∥

L2
. (1.54)

Proposition 1.21.

a) We have Hs(Rd) ⊂ Ht(Rd) for s ≥ t, and in particular Hs(Rd) ⊂ L2(Rd) for all
s ≥ 0.

b) If s ∈ N is a non-negative integer, then f ∈ Hs(Rd) if and only if f ∈ L2(Rd) and
∂αf ∈ L2(Rd) for all |α| ≤ s.

Proof. a): Let s ≥ t. Then
(1 + p2)t

(1 + p2)s
≤ C (1.55)

for some C > 0. Thus for f ∈ Hs we have (1 + p2)t/2f̂ ∈ L2, because∫
(1 + p2)t|f̂(p)|2dp =

∫ (1 + p2)t

(1 + p2)s
(1 + p2)s|f̂(p)|2dp

≤ C

∫
(1 + p2)s|f̂(p)|2dp = C∥f∥2

Hs . (1.56)

Hence f ∈ Ht and thus Hs ⊂ Ht. As H0 = L2 by definition this proves a).
b): Let first f ∈ Hm(Rd), m ∈ N. Then f ∈ L2 by a) and we have for the derivative

in S ′

∂αf = F −1(ip)αf̂ . (1.57)
By Plancherel’s Theorem it is thus enough to show that (ip)αf̂ ∈ L2 for |α| ≤ m. This
now follows from the inequalities∣∣∣(i)|α|pα1

1 · · · pαd
d f̂(p)

∣∣∣2 ≤ |p|2|α||f(p)|2 ≤ (1 + p2)|α||f(p)|2 ≤ (1 + p2)m|f(p)|2. (1.58)
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1. Introduction

For the reverse implication, we have by Plancherel that (ip)αf̂ for all |α| ≤ m and
thus p2α |̂f(p)|2 ∈ L1. Now

p2m = (p2
1 + · · · + p2

d)m =
∑

|α|=m

m!
α! p

2α (1.59)

by the multinomial theorem, so p2m|f̂(p)|2 ∈ L1. This implies that (1 + p2)m/2f̂ ∈ L2

because (1 + p2m)/(1 + p2)m is bounded, by the argument of (1.56)

Theorem 1.22. For any z ∈ C \ [0,∞) and φ ∈ S ′(Rd) there exists a unique solution
u ∈ S ′(Rd) to the equation

(∆ + z)u = φ.

Moreover, if φ ∈ Hs(Rd) for some s ∈ R then u ∈ Hs+2(Rd).

Proof. Existence: Since z is not a non-negative real number, z−p2 ̸= 0, and (z−p2)−1 is
smooth, with bounded derivatives. Hence for f ∈ S (Rd), we have (z− p2)−1f ∈ S (Rd)
and

û(f) := φ̂((z − p2)−1f) (1.60)
defines an element of S ′(Rd). Setting u = F −1û, we have for every f ∈ S

[(∆ + z)u](f) = u((∆ + z)f) = û(F (∆ + z)f) = û((z− p2)f̂) (1.60)= φ̂(f̂) = φ(f). (1.61)

This means that (∆ + z)u = φ.
Uniqueness: Let u, v ∈ S ′ be two, possibly different, solutions. Then for all f ∈ S

û((z − p2)f) − v̂((z − p2)f) = φ̂(f̂) − φ̂(f̂) = 0. (1.62)

Since f 7→ (z − p2)f̂ is a bijection on S (Rd) this implies that û = v̂, and since the
Fourier transform is injective u = v.

Regularity: Assume that φ ∈ Hs(Rd), i.e. (1 + p2)s/2φ̂ ∈ L2(Rd). First, note that φ̂
is represented by a measureable function g, i.e.,

φ̂(f) =
∫
g(p)f(p)dp. (1.63)

Thus û is represented by the function p 7→ (z − p2)−1g(p) and u ∈ Hs(Rd), since

(1 + p2)s/2|û(p)| = (1 + p2)s/2
∣∣∣ g(p)
z̄ − p2

∣∣∣ ≤ C(1 + p2)s/2|g(p)| ∈ L2(Rd). (1.64)

Then

(1 + p2)s/2+1û = (1 + p2)s/2(1 + p2)û
= (1 + p2)s/2(1 + z)û− (1 + p2)s/2φ̂ ∈ L2(Rd), (1.65)

so u ∈ Hs+2. This proves the claim.
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1.2. Linear PDEs with constant coefficients and the Fourier transform

Remark 1.23. We have shown that the linear map u 7→ (∆ + z)u from Hs+2(Rd) to
Hs(Rd) is invertible – the inverse in the point φ is given by taking the solution to the
equation above.

The link to spaces of differentiable functions is given by the following theorem.

Theorem 1.24 (Sobolev’s Lemma). Let f ∈ Hs(Rd) with s > d/2. Then f is continuous
and for all m < s − d/2 we have f ∈ Cm(Rd). Moreover, for s > d/2 and |α| ≤ m <
s− d/2 there exists a constant so that for all f ∈ Hs(Rd)

∥∂α
x f∥∞ ≤ C∥f∥Hs .

For the proof, we recall from Fourier analysis:

Lemma 1.25 (Riemann-Lebesgue). If f ∈ S ′ such that f̂ = Ff ∈ L1(Rd), then
f ∈ C(Rd) and lim|x|→∞ f(x) = 0.

Proof of Sobolev’s Lemma. We first show that f ∈ Hs(Rd), s > d/2 is continuous. By
the Riemann-Lebesgue Lemma, it is sufficient to show that f̂ ∈ L1. This follows from
the Cauchy-Schwarz inequality by
∫

|f̂(p)|dp =
∫

(1 + p2)−s/2(1 + p2)s/2|f̂(p)|dp ≤ ∥f∥Hs

(∫
(1 + p2)−sdp

)1/2
, (1.66)

where the final integral is finite because 2s > d. Now let m < s − d/2 and |α| ≤ m.
Then (ip)αf̂ ∈ L1, since

∫
|(ip)αf̂(p)|dp ≤

∫
(1 + p2)m/2|f̂(p)| ≤ ∥f∥Hs

(∫
(1 + p2)−s+mdp

)1/2
. (1.67)

Hence the distributional derivative ∂αf ∈ S ′ is a continuous function. It remains to
show that this equals the usual derivative. We show this for a derivative of order one,
the general case follows by repetition of the same argument. Let ℓ ∈ {1, . . . , d} and let
g := F −1ipℓf̂ denote the distributional derivative in direction xℓ. Then by the Fourier
inversion formula

f(x+ εeℓ) − f(x) − εg(x)
ε

= 1
(2π)d/2

∫ eixp+iεpℓ − eixp − iεpℓeipx

ε
f̂(p)dp. (1.68)

This converges to zero as ε → 0 by the dominated convergence theorem, since by the
mean-value theorem ∣∣∣eixp+iεpℓ − eixp − iεpℓeipx

ε
f̂(p)

∣∣∣ ≤ 2|pℓ||f̂(p)|, (1.69)

where the right hand side is in L1(Rd) and independent of ε. This proves that g = ∂xℓ
f ,

which gives the claim.
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1. Introduction

We can now prove our first regularity result that applies, in particular, to the solutions
obtained in Theorem 1.22.

Corollary 1.26. Let s ∈ R and u ∈ Hs(Rd). If −∆u = f ∈ Ht(Rd) for some t ≥ s− 2,
then u ∈ Ht+2(Rd). If m < t+ 2 − d/2 is a non-negative integer then also u ∈ Cm(Rd).

Proof. Let t1 = min{s, t}. Since u ∈ Hs, −∆u ∈ Ht1 , we have

(1 + p2)t1/2û(p)︸ ︷︷ ︸
∈L2 since t1≤s

+ p2(1 + p2)t1/2û(p)︸ ︷︷ ︸
∈L2 since t1≤t

= (1 + p2)t1/2+1û(p) ∈ L2(Rd), (1.70)

so u ∈ Ht1+2(Rd). If t1 = t (i.e., t ≤ s) this proves the claim. Otherwise, we apply the
same argument with s′ = t1 +2 and conclude that u ∈ Ht2+2(Rd) with t2 = min{t, s+2}.
We repeat this until tn = min{t, s+ 2(n− 1)} = t, and this proves the claim.

The second part u ∈ Cm follows from Sobolev’s Lemma.

14



2. Linear operators on Hilbert spaces

In the previous chapter we were already able to solve some PDEs, but we were restricted
to PDEs with constant coefficients. This restriction allowed us solve the equation using
the Fourier transform, which essentially reduces the problem to the calculation of explicit
integrals. Of course, in general one cannot hope to solve all PDEs in such an explicit
way. For example, the stationary Schrödinger equation

−∆u(x) + V (x)u(x) = λu(x) (2.1)

and the time-dependent Schrödinger equation

i∂tu(t, x) = −∆u(x) + V (x)u(x) (2.2)

do not have constant coefficients if the potential V (x) is not constant.
In this chapter we will develop general methods for treating linear equations of the

form
Au = f (2.3)

where u ∈ X for an appropriate vector space X (e.g., C∞(Rd), S (Rd), Hs(Rd)), and A
is linear.

We will introduce Hilbert spaces and their (continuous) linear transformations as
a framework to study equations of this type. In the next chapter we will then use
our knowledge to solve evolution equations like the time-dependent Schrödinger equa-
tion (2.2).

2.1. Banach spaces, Hilbert spaces
Recall from analysis the definition of a general norm.

Definition 2.1. Let X be a vector space (over R or C). A norm on X is a function
∥ · ∥ : X → [0,∞) such that

(i) ∥x∥ = 0 ⇔ x = 0 (definiteness)

(ii) ∥ax∥ = |a|∥x∥ for all x ∈ X and a ∈ C (or a ∈ R) (homogeneity)

(iii) ∥x+ y∥ ≤ ∥x∥ + ∥y∥ for all x, y ∈ X (triangle inequality).

The pair (X, ∥ · ∥) is then called a normed space.

Question 2.2. Which of the following maps define norms?
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2. Linear operators on Hilbert spaces

a) ∥x∥ = |x|p, x ∈ C, p > 0;

b) ∥x∥ = maxn=1,...d |xn|, x ∈ Cd;

c) ∥f∥ = |f(0)|, f ∈ C(R,C).

d) ∥f∥α,β := ∥xα∂βf∥∞, f ∈ S ∞(Rd), α, β ∈ Nd
0.

A normed space (X, ∥·∥) is a (metric) topological space. Recall the following definitions
from topology.

Definition 2.3. Let (X, ∥ · ∥) be a normed space.

a) The set
B(x, r) := {y ∈ X : ∥x− y∥ < r} (2.4)

is called the open ball in X with center x and radius r.

b) A set U ⊂ X is open if for every y ∈ U there is r > 0 so that B(y, r) ⊂ U .

c) A set A ⊂ X is called closed if Ac = X \A is open.

d) For A ⊂ X the closure
A :=

⋂
A⊂B⊂X
B closed

B

is the smallest closed set containing A.

e) A set A ⊂ X is called dense in X if A = X.

f) A sequence xn ∈ X, n ∈ N in X converges to x ∈ X if

∀ε > 0 ∃n0 ∈ N : ∀n ≥ n0 : ∥xn − x∥ < ε.

g) A sequence is called Cauchy sequence if

∀ε > 0 ∃n0 ∈ N : ∀n,m ≥ n0 : ∥xn − xm∥ < ε.

h) A set K ⊂ X is compact if every sequence xn ∈ K, x ∈ N has a subsequence that
converges to a limit x ∈ K (this is equivalent to the definition of compactness by
open covers in all metric spaces, so in particular normed spaces).

Definition 2.4. Two norms ∥ · ∥1, ∥ · ∥2 on a space X are called equivalent if there exist
constants C1, C2 > 0 so that for all x ∈ X

∥x∥1 ≤ C1∥x∥2

∥x∥2 ≤ C2∥x∥1,

or equivalently
C−1

1 ∥x∥1 ≤ ∥x∥2 ≤ C2∥x∥1. (2.5)
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2.1. Banach spaces, Hilbert spaces

Proposition 2.5. Let ∥ · ∥1, ∥ · ∥2 be two equivalent norms on X. Then the topologies
on X induced by both norms are the same, i.e. the open sets are the same.

Proof. Exercise.

Remark 2.6. The proof of Proposition 1.21 shows that the Hm-norm, m ∈ N, is
equivalent to the norm

|∥f |∥ :=
( ∑

|α|≤m

∥∂αf∥2
L2

)1/2
. (2.6)

To do analysis on such spaces, an important notion is completeness.

Definition 2.7. A normed space (X, ∥ · ∥) is complete if every Cauchy sequence in X
converges to some x ∈ X. A complete normed space is called a Banach space.

Example 2.8. The following spaces are Banach spaces:

a) Cd with any norm (equivalence of norms in finite dimension!).

b) C([0, 1],C) with the maximum norm ∥f∥∞ = maxx∈[0,1] |f(x)| (uniform limit theo-
rem).

c) The space ℓp of p-summable sequences, p ∈ [1,∞)

ℓp =
{
an ∈ C, n ∈ N : ∥a∥p :=

( ∞∑
n=1

|an|p
)1/p

< ∞
}
.

d) L∞(Rd) with the (essential) supremum

∥f∥∞ := ess sup
x∈Rd

|f(x)| := inf{C > 0 : |f(x)| ≤ C for a.e. x ∈ Rd}

Remark 2.9. The spaces S and S ′ are not Banach spaces, since their topology does
not come from a norm.

Every normed space has a completion, i.e. a Banach space in which is included as a
dense subset (that is, if we identify X and ι(X) in the theorem below).

Theorem 2.10. Let (X, ∥ · ∥) be a normed space. Then there exists a Banach space
(X, |∥ · |∥) and an injective linear map ι : X → X that is an isometry, i.e. it satisfies
|∥ι(x)|∥ = ∥x∥ for all x ∈ X, and ι(X) is dense in X.

Proof. The space X is constructed from the space of all Cauchy sequences in X, where
two sequences are identified if their difference converges to zero (much like the construc-
tion of the completion R of Q). We omit the details.

In most cases we will only consider Hilbert spaces, which additionally have a scalar
product.
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2. Linear operators on Hilbert spaces

Definition 2.11. A (complex) Hilbert space H is a vector space with a scalar product
(a positive definite sesquilinear form), such that H with the norm ∥f∥ :=

√
⟨f, f⟩ is

complete (i.e. a Banach space).

Example 2.12. For s ∈ R the Sobolev space Hs(Rd) is a Hilbert space with the scalar
product

⟨f, g⟩Hs =
∫

(1 + p2)sf̂(p)ĝ(p)dp.

Definition 2.13. Let H be a Hilbert space. Two vectors f, g ∈ H are called orthogonal
if ⟨f, g⟩ = 0. For a set S ⊂ H, the orthogonal complement S⊥ is defined by

S⊥ := {f ∈ H : ∀g ∈ S ⟨f, g⟩ = 0}.

Proposition 2.14. Let B := B(f, r) be a closed ball in a Hilbert space H. Then B is
compact if and only if H is finite-dimensional.

Proof. Since translation by f and scaling by r−1 is a homeomorphism, it is sufficient to
prove the statement for B := B(0, 1).

If H has dimension d < ∞, then the unit ball is compact because (after choosing an
orthonormal basis) it is a closed and bounded subset of Cd.

Assume now that the dimension of H is infinite and let f1 ∈ H be any vector with
∥f1∥ = 1. Then F1 := span{f1} is a one-dimensional closed subspace of H, and H =
F ⊕ F⊥ (cf. [FA]). Since dim H = ∞, dim (F⊥) = dimH − 1 = ∞, and we can choose
f2 ∈ F⊥

1 with ∥f2∥ = 1. Continuing in this way, we find a sequence of vectors fn, n ∈ N
satisfying ∥fn∥ = 1 and ⟨fn, fm⟩ = 0 for n ̸= m. We thus have for all n,m ∈ N

∥fn − fm∥2 = ∥fn∥2 + ∥fm∥2 + 2Re⟨fn, fm⟩ = 2, (2.7)

so this sequence cannot contain a convergent subsequence.

Definition 2.15. An orthonormal system (ONS) in H is a family {ei, i ∈ I} ⊂ H, such
that

⟨ei, ej⟩ =
{

1 i = j

0 i ̸= j.

An orthonormal system is called complete (or an orthonormal Hilbert basis) if for every
f ∈ H

f =
∑
i∈I

⟨ei, f⟩ei. (2.8)

A Hilbert space is called separable if there exists a countable complete ONS in H. In
the following we will only consider separable Hilbert spaces.

Example 2.16. The Sobolev spaces Hs(Rd) are separable. A complete ONS can be
given as follows. First, choose a complete ONS in L2(Rd), for example the Hermite
functions (here in d = 1)

en(x) := cnHn(x)e− 1
2 x2

, (2.9)
where Hn(x) are the Hermite polynomials, cn normalizing constants, and n ∈ N0. A
complete ONS of Hs(Rd) is then given by en,s(x) := F −1(1 + p2)−s/2ên(p).
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2.1. Banach spaces, Hilbert spaces

Remark 2.17. Note that separability does not mean that the vector-space dimension
of H is countable (that would require the linear combination to be finite). In fact,
the vector space dimension of a Hilbert space is either finite or uncountable by Baire’s
theorem.

Definition 2.18. Let H be a Hilbert space and fn ∈ H, n ∈ N be a sequence. We say
that this sequence converges weakly to f ∈ H if

∀g ∈ H : lim
n→∞

⟨fn, g⟩ = ⟨f, g⟩.

Example 2.19. Let en, n ∈ N be an ONS in H. Then en converges to zero weakly as
n → ∞. Indeed, for any g ∈ H we have the Bessel inequality

∞∑
n=1

|⟨g, en⟩|2 ≤ ∥g∥2, (2.10)

so ⟨g, en⟩ converges to zero.

As seen above, there are bounded sequences in Hs(Rd) that do not have convergent
subsequences. However, with the notion of weak convergence we can still find some sort
of limit.

Theorem 2.20. Let H be a separable Hilbert space. Any bounded sequence fn ∈ H,
n ∈ N, has a weakly convergent subsequence.

Proof. Let en, n ∈ N, be a complete ONS in H. For every n, the sequence k 7→ ⟨en, fk⟩
is a bounded sequence in C (and thus has a convergent subsequence), since

|⟨en, fk⟩| ≤ ∥fk∥ ≤ sup
k

∥fk∥ < ∞. (2.11)

We will extract a joint convergent subsequence by a diagonal argument. Start with n = 1
by extracting a convergent subsequence, i.e., an infinite subset S1 ⊂ N with

lim
k→∞
k∈S1

⟨e1, fk⟩ = c1 ∈ C. (2.12)

The sequence ⟨e2, fk⟩, k ∈ S1, is obviously bounded, so we can again extract a convergent
subsequence S2 ⊂ S1 ⊂ N. By repeating this argument, we obtain infinite sets Sj , j ∈ N
with Sj ⊂ Sℓ if j > ℓ.

Now let kj be the j-th element of Sj (i.e., k1 is the smallest element of S1, k2 the
second of S2, etc.). Then we have

lim
j→∞

kj = ∞ (2.13)

kj ∈
⋂
ℓ≤j

Sℓ. (2.14)
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2. Linear operators on Hilbert spaces

Consequently for all n ∈ N
lim

j→∞
⟨en, fkj

⟩ = cn, (2.15)

because kj ∈ Sn for j ≥ n.
We now claim that fkj

converges weakly to

f :=
∞∑

n=1
cnen. (2.16)

First note that, by Fatou’s Lemma and Parseval’s identity
∞∑

n=1
|cn|2 ≤ liminfj→∞

∞∑
n=1

|⟨en, fkj
⟩|2 = liminfj→∞∥fkj

∥2 ≤ sup
k

∥fk∥2 < ∞. (2.17)

Hence (cn)n∈N ∈ ℓ2(N) and f ∈ H by Parseval’s identity. Now for any g ∈ H and N ∈ N

|⟨g, fkj
− f⟩| ≤

∞∑
n=1

|⟨g, en⟩||⟨en, fkj
− f⟩|

≤
N∑

n=1
|⟨g, en⟩||⟨en, fkj

− f⟩| +
( ∞∑

n=N+1
|⟨g, en⟩|2

)1/2
∥fkj

− f∥

≤
N∑

n=1
|⟨g, en⟩||⟨en, fkj

− f⟩| +
( ∞∑

n=N+1
|⟨g, en⟩|2

)1/2
2 sup

k
∥fk∥. (2.18)

Let ε > 0. Then, since ⟨g, en⟩ ∈ ℓ2 and thus

lim
N→∞

∞∑
n=N+1

|⟨g, en⟩|2 = lim
N→∞

(
∥g∥2 −

N∑
n=1

|⟨g, en⟩|2
)

= 0, (2.19)

we can choose N(ε) so that the second term is less than ε/2. The first term is then a
finite sum of sequences that all converge to zero as j → ∞, so we can make it smaller
than ε/2 by choosing j ≥ j0(N, ε) large enough. This proves the claim.

2.2. Bounded linear operators
Definition 2.21. Let X,Y be normed spaces. A linear map A : X → Y is called
bounded if

∥A∥ := sup
x∈X

∥x∥X =1

∥Ax∥Y < ∞.

Question 2.22. Which of the following maps are bounded?

a) Tv : L2(Rd) → L2(Rd), f 7→ f(· − v) with v ∈ Rd;

b) φf : H → C, g 7→ ⟨f, g⟩ with f ∈ H;
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2.2. Bounded linear operators

c) ∆ : S → S , where S is equipped with the L2-norm.

Proposition 2.23. Let X,Y be normed spaces and A : X → Y linear. The following
are equivalent

a) A is bounded;

b) A is continuous in x = 0;

c) A is continuous.

Proof. We prove a) ⇒ b) ⇒ c) ⇒ a).
Let A be bounded. Since A0 = 0 by linearity, continuity in x = 0 means that

∀ε > 0 ∃δ > 0 : ABX(0, δ) ⊂ BY (0, ε). (2.20)

We have for x ̸= 0

∥Ax∥Y =
∥∥∥∥∥x∥XA

x

∥x∥X

∥∥∥∥
Y

= ∥x∥X

∥∥∥∥A x

∥x∥X︸ ︷︷ ︸
∥·∥X=1

∥∥∥∥
Y

≤ ∥A∥∥x∥X , (2.21)

so (2.20) holds with δ = ∥A∥−1ε. This proves a) ⇒ b).
Let A be continuous in x = 0. By linearity Ax = Ax0 +A(x− x0), and by continuity

in zero
∀ε > 0 ∃δ > 0 : ∥A(x− x0)∥ < ε for ∥x− x0∥ < δ. (2.22)

Thus we have ABX(x0, δ) ⊂ BY (Ax0, ε), which is continuity in x = x0. This proves
b) ⇒ c).

To prove c) ⇒ a) we argue by contradiction, so assume that A is continuous but not
bounded. Then there exists a sequence xn, n ∈ N, with ∥xn∥ = 1 so that

lim
n→∞

∥Axn∥Y = ∞. (2.23)

Consequently
lim

n→∞
xn

∥Axn∥Y
= 0, (2.24)

and by continuity of A
lim

n→∞
Axn

∥Axn∥Y
= 0. (2.25)

But the norm of the sequence above clearly equals one, a contradiction. We thus have
c) ⇒ a).

Theorem 2.24 (B.L.T. Theorem). Let X,Y be Banach spaces and D ⊂ X a dense
subspace. Suppose A : D → Y is a bounded linear transformation, then there exists a
unique bounded linear transformation A : X → Y that extends A, and ∥A∥ = ∥A∥ holds.
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2. Linear operators on Hilbert spaces

Proof. By Proposition 2.23, A is continuous so the idea is to extend in such a way that
preserves continuity.

Since D = X, every x ∈ X \ D is a limit point of of D (cf. Problem 9), i.e. there
exist xn ∈ D, n ∈ N, so that xn → x as n → ∞. The sequence xn is Cauchy in X, and
because A is bounded, we have

∥Axn −Axm∥Y ≤ ∥A∥∥xn − xm∥X , (2.26)

so the sequence Axn is Cauchy in Y . Since Y is complete, it thus converges to a limit
y ∈ Y . We set

Ax := y. (2.27)

This is well defined, for if x̃n → x is another sequence, then x̃n − xn → 0 and thus

lim
n→∞

Ax̃n = y + lim
n→∞

A(x̃n − xn) = y, (2.28)

by continuity of A. Linearity of A follows from linearity of A and the limit. This
extension is unique, for if Ã were another bounded extension, it would be continuous by
Proposition 2.23 and Ãx = y = Ax follows.

Moreover, we have by continuity of the norm

∥Ax∥Y = ∥ lim
n→∞

Axn∥Y = lim
n→∞

∥Axn∥Y ≤ ∥A∥ lim
n→∞

∥xn∥X = ∥A∥∥x∥X , (2.29)

so ∥A∥ ≤ ∥A∥. We also have ∥A∥ ≤ ∥A∥, since in one case the supremum is over D and
in the other over X, which is larger. Thus A is bounded with ∥A∥ = ∥A∥.

Examples 2.25.

a) The Fourier transform F : S → S ⊂ L2 can be defined by the integral formula.
We equip S with the L2-norm, making it into a (incomplete) normed space, that
is dense in L2. By Plancherel, the norm of F is equal to one. Hence there exists a
unique continuous extension F : L2 → L2, the Fourier transform on L2, whose norm
is also one.

b) The Laplacian ∆ is clearly well defined in the classical sense on C∞
0 (Rd). Let

X = C∞
0 (Rd) with the H2-norm (which is equivalent to the L2-norms of the par-

tial derivatives, see Remark 2.6). Using the Fourier transform, we see that

∆ : X → L2(Rd) (2.30)

is bounded, because for f ∈ C∞
0 (Rd)

∥∆f∥L2(Rd) = ∥p2f̂∥L2(Rd) ≤ ∥f∥H2 . (2.31)

There is thus a unique continuous extension to H2(Rd). Since the distributional
Laplacian is continuous from H2 to L2 and coincides with the usual Laplacian on X
(since they coincide on S (Rd)) this extension is just the distributional Laplacian.
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2.2. Bounded linear operators

By this result, we can always assume that a bounded operator A is defined on a
complete space, by passing to the completion X if necessary (cf. Theorem 2.10).

Definition 2.26. Let X,Y be normed spaces. We denote the vector space of bounded
linear maps A : X → Y by B(X,Y ). This is a normed space with

∥A∥B(X,Y ) := sup
x∈X

∥x∥X =1

∥Ax∥Y .

• We denote by B(X) the space of bounded linear operators on X, B(X) := B(X,X).

• We denote by X ′ the space of bounded linear functionals on X, X ′ := B(X,C).

Proposition 2.27. Let X,Y be Banach spaces. Then B(X,Y ) is complete, i.e. a
Banach space.

Proof. Exercise 13.

On Hilbert spaces, the linear functionals have a particularly simple representation.

Theorem 2.28 (Riesz Representation Theorem). Let H be a complex Hilbert space and
φ ∈ H′ a continuous linear functional on H. There exists a unique f ∈ H so that for all
g ∈ H

φ(g) = ⟨f, g⟩.

The map
Φ : H → H′, f 7→ ⟨f, ·⟩

is an anti-linear isometric isomorphism.

Proof. Let 0 ̸= φ ∈ H′. Let K := kerφ, then K is a closed subspace and H = K ⊕K⊥.
By the homomorphism theorem, H/K ∼= ranφ = C, and thus K⊥ has dimension one.
As φ does not vanish on K⊥ \ {0}, there is f ∈ K⊥ with φ(f) = ∥φ∥2 and we have
K⊥ = span{f}. For a general element of H, h = g + af , g ∈ K, a ∈ C, we then have

φ(g + af) g∈K= φ(af) = a∥φ∥2 = ∥φ∥2

∥f∥2 a∥f∥2 = ∥φ∥2

∥f∥2 ⟨f, g + af⟩. (2.32)

Moreover, we have

∥φ∥ = sup
h∈H

∥h∥=1

|φ(h)| = sup
g∈K⊥
∥g∥=1

|φ(g)| = φ
( f

∥f∥

)
= ∥φ∥2

∥f∥
, (2.33)

so ∥φ∥ = ∥f∥ and φ(h) = ⟨f, h⟩. This shows that Φ is bijective and ∥Φ−1(φ)∥ = ∥φ∥.
The fact that ∥Φ(f)∥ = ∥f∥ is Exercise 15. Clearly, Φ is anti-linear, and the proof is
complete.

This result has important consequences for tempered distributions, which are defined
as linear functionals. For example, we can show that (Hs)′ is naturally identified with
H−s.
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2. Linear operators on Hilbert spaces

Corollary 2.29. Let φ ∈ S ′(Rd), s ∈ R and assume that there exists a constant C ≥ 0
so that for all f ∈ S (Rd)

|φ(f)| ≤ C∥f∥Hs .

Then there exists g ∈ H−s(Rd) so that

φ(f) =
∫
ĝ(p)f̂(p)dp.

Proof. By the assumed inequality, the linear map φ : S → C is bounded with respect
to the Hs-norm. As S is dense in Hs (see Exercise 12) it extends uniquely to a contin-
uous linear functional on Hs(Rd) by the B.L.T Theorem. By the Riesz Representation
Theorem, there exists h ∈ Hs(Rd) so that

φ(f) =
∫

(1 + p2)sh(p)f̂(p)dp =
∫
ĝ(p)f̂(p)dp (2.34)

with ĝ(p) := (1 + p2)sĥ(p), which is clearly an element of H−s(Rd).

We will now turn our focus to the operators B(H) on a separable complex Hilbert
space H.

Proposition 2.30. Let A ∈ B(H). There exists a unique A∗ ∈ B(H), called the adjoint,
such that

∀f, g ∈ H : ⟨f,Ag⟩ = ⟨A∗f, g⟩.

Moreover, ∥A∗∥ = ∥A∥.

Proof. The map
g 7→ ⟨f,Ag⟩ (2.35)

is a continuous linear functional on H. By the Riesz representation theorem, there exists
h ∈ H so that

⟨f,Ag⟩ = ⟨h, g⟩.

We set A∗f := h and this is well defined by uniqueness of h. The map A∗ is linear, since
for f, g, h ∈ H, a ∈ C

⟨A∗(f + ag), h⟩ = ⟨f,Ah⟩ + ⟨g, aAh⟩ = ⟨A∗f + aA∗g, h⟩. (2.36)

Moreover, we have by the isometry of the Riesz representation

∥A∗∥ = sup
∥f∥=1

∥A∗f∥ = sup
∥f∥=1

sup
∥g∥=1

|⟨A∗f, g⟩| = sup
∥g∥=1

sup
∥f∥=1

|⟨f,Ag⟩| = ∥A∥. (2.37)

The following definition generalises well-known notions for matrices to B(H).

Definition 2.31. Let A ∈ B(H).
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2.3. Application: An elliptic equation with variable coefficients

a) A is called self-adjoint if A∗ = A;

b) A is called unitary if A∗A = 1 = AA∗;

c) A is called normal if A∗A = AA∗.

Question 2.32. Which of the following operators are normal and/or self-adjoint, uni-
tary?

a) Mgf = gf with g ∈ L∞(Rd) on L2(Rd);

b) Tvf = f(· + v) with v ∈ Rd on L2(Rd);

c) Ttf = f(· + t) with t > 0 on L2(R+).

Example 2.33. Let f ∈ L2(Rd) and u(t, x) be the unique solution of the heat equation
(cf. [FA, Thm.4.3.5]){

∂tu(t, x) = ∆u(t, x), (t, x) ∈ (0,∞) × Rd

u(0, x) = f(x).

Then Ttf := u(t, ·), t ≥ 0, is self-adjoint (and hence normal) on L2(Rd), but not unitary
for t > 0. To see this, write for t > 0

u(t, x) =
∫
Rd
Et(x− y)f(y)dy = 1

(4πt)d/2

∫
Rd

e−|x−y|2/(4t)f(y)dy. (2.38)

Then, because E(t, x− y) is real and symmetric under exchange of x, y, we have

⟨g,Et ∗ f⟩ = 1
(4πt)d/2

∫
Rd
g(x)

∫
Rd

e−|x−y|2/(4t)f(y)dydx = ⟨Et ∗ g, f⟩, (2.39)

so T ∗
t = Tt. We have

T ∗
t Tt = T 2

t = T2t (2.40)
because u(t + s) solves the heat equation with u(t + 0) = u(t). Now T2t ̸= 1 for t > 0
so Tt is not unitary. We also have ∥Ttf∥ ≤ ∥f∥ hence we say that Tt is a contraction
(in fact, the inequality is strict because λ = 1 is not an eigenvalue of Tt, but the bound
cannot be improved uniformly in f).

2.3. Application: An elliptic equation with variable coefficients
As an application of our results we can now study the elliptic equation

− divM(x)∇u(x) + λu(x) = f(x) (2.41)

for a non-trivial coefficients matrix M . We assume that M is uniformly elliptic, that is,
there exists a > 0 so that for all x ∈ Rd, v ∈ Cd

⟨v,M(x)v⟩Cd ≥ a∥v∥2. (2.42)
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2. Linear operators on Hilbert spaces

Instead of studying the equation (2.41) directly, we will first consider its weak form.
Assume that f ∈ L2(Rd), λ ∈ R, and u ∈ L2(Rd) solves (2.41). Then for all φ ∈ S (Rd)
we have

⟨f, φ⟩L2(Rd) = ⟨− divM(x)∇u+ λu, φ⟩L2

=
∫

⟨M(x)∇u(x),∇φ(x)⟩Cddx+ λ⟨u, φ⟩L2

= ⟨M(x)∇u(x),∇φ(x)⟩L2(Rd,Cd) + λ⟨u, φ⟩L2(Rd). (2.43)

If M is bounded, the latter expression is well defined for u, φ ∈ H1(Rd). We thus call
u ∈ H1(Rd) a weak solution to (2.41) if

∀φ ∈ H1(Rd) : ⟨M∇u,∇φ⟩L2(Rd,Cd) + λ⟨u, φ⟩L2(Rd) = ⟨f, φ⟩L2(Rd). (2.44)

Theorem 2.34. Let M ∈ L∞(Rd,B(Cd)) be uniformly elliptic. Then for every λ > 0
and f ∈ L2(Rd) there exists a unique solution u ∈ H1(Rd) to (2.44).

Proof. For f, g ∈ H1(Rd) denote

≪ f, g ≫:= λ⟨f, g⟩L2(Rd) + ⟨M∇f,∇g⟩L2(Rd,Cd). (2.45)

This is a scalar product on H1(Rd). By ellipticity of M , we have

≪ f, f ≫= λ∥f∥2
L2 +

∫
⟨M(x)∇f(x),∇f(x)⟩︸ ︷︷ ︸

≥a∥∇f(x)∥2

≥ λ∥f∥2
L2 + a∥∇f∥2

L2 ≥ min{a, λ}∥f∥2
H1 .

(2.46)
On the other hand, by boundedness of M ,

≪ f, f ≫≤ λ∥f∥2
L2 + ∥M∥L∞∥∇f∥2

L2 ≤ max{λ, ∥M∥∞}∥f∥2
H1 . (2.47)

The norm induced by ≪ f, g ≫ is thus equivalent to the H1-norm, so H1 equipped with
this scalar product is complete, i.e. a Hilbert space.

The right hand side of the equation satisfies

|⟨f, φ⟩| ≤ ∥f∥L2∥φ∥L2 ≤ ∥f∥L2∥φ∥H1 . (2.48)

The map φ 7→ ⟨f, φ⟩ is thus a continuous linear functional on H1(Rd). By the Riesz
Representation Theorem there exists a unique u ∈ H1(Rd) so that

⟨f, φ⟩ =≪ u, φ ≫, (2.49)

i.e, u is the unique solution to (2.44).

We want to establish that, when the coefficient matrix M is sufficiently regular, the
weak solution obtained in this theorem is an element of H2(Rd) and solves the equa-
tion (2.41) in the sense of equality in L2(Rd).

To this end, we need the following Lemma on the difference quotients.
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2.3. Application: An elliptic equation with variable coefficients

Lemma 2.35. Define for 0 ̸= h ∈ Rd an operator Dh ∈ B(L2(Rd)) by

(Dhf)(x) = f(x+ h) − f(x)
|h|

.

a) If f ∈ H1(Rd), then for all h ∈ Rd: ∥Dhf∥ ≤ ∥∇f∥.

b) If f ∈ L2(Rd) and sup0̸=h∈Rd ∥Dhf∥ < ∞, then f ∈ H1(Rd).

Proof. a) Assume first that f ∈ S (Rd). Then by the fundamental theorem of calculus

|Dhf(x)| =
∣∣∣∣ 1
|h|

∫ 1

0
h · ∇f(x+ th)dt

∣∣∣∣ ≤
∫ 1

0
|∇f(x+ th)|dt. (2.50)

Thus by Cauchy-Schwarz

∥Dhf∥2 ≤
∫ 1

0

∫ 1

0

∫
Rd

|∇f(x+ th)||∇f(x+ sh)|dxdtds ≤ ∥∇f∥2. (2.51)

Since S is dense in H1(Rd), the bounded linear maps Dh : S → L2 can be extended to
H1(Rd) with the same norm, so the inequality still holds for f ∈ H1(Rd). This proves
a).

b) Let i ∈ {1, . . . , d}, n ∈ N and set hn = n−1ei. By hypothesis, the sequence Dhnf
is bounded in L2(Rd). Hence by Theorem 2.20 it has a weakly convergent subsequence,
which we denote by the same symbols. Let g ∈ L2(Rd) denote the weak limit and let
φ ∈ S (Rd) ⊂ L2(Rd). Then by a change of variables and dominated convergence

⟨φ, g⟩ = lim
n→∞

⟨φ,Dhnf⟩

= lim
n→∞

n

∫
φ(x)(f(x+ n−1ei) − f(x))dx

= lim
n→∞

∫
n(φ(x− n−1en) − φ(x))f(x)dx

=
∫

−(∂iφ(x))f(x)dx. (2.52)

Hence g coincides with ∂if in S ′(Rd), whence ∂if ∈ L2(Rd). In view of Proposition 1.21
this shows that f ∈ H1(Rd).

Theorem 2.36. Assume the hypothesis of Theorem 2.34 and additionally that M ∈
C1(Rd,B(Cd)) and that ∇M is bounded. Let u be the weak solution to (2.44), then
u ∈ H2(Rd) and (2.41) holds in L2(Rd).
Proof. The idea is to take the derivative of the equation, but since we do not know a
priori that this makes sense, we rather consider difference quotients Dh as above.

We know that u ∈ H1(Rd), so we may take φ = D−hDhu in (2.44). Note that we have
the following identities:

D∗
−h = Dh (2.53)

∇Dhf = Dh∇f (2.54)
Dh(fg) = (τhf)Dhg + gDhf, (2.55)
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2. Linear operators on Hilbert spaces

where τhf(x) = f(x+ h). With this, we find from (2.44)

⟨f,D−hDhu⟩ = ⟨DhM∇u,Dh∇u⟩ + λ⟨u,D−hDhu⟩
= ⟨(τhM)Dh∇u,Dh∇u⟩ + ⟨(DhM)∇u,Dh∇u⟩ + λ⟨u,D−hDhu⟩. (2.56)

Using that M is elliptic, we obtain from this and Lemma 2.35

a∥Dh∇u∥2 ≤ ⟨(τhM)Dh∇u,Dh∇u⟩
(2.56)

≤ |⟨f,D−hDhu⟩| + |⟨(DhM)∇u,Dh∇u⟩| + λ∥u∥∥D−hDhu∥
≤ (∥f∥ + λ∥u∥)∥∇Dhu∥ + ∥DhM∥L∞∥∇u∥∥Dh∇u∥. (2.57)

Now we have

∥DhM∥L∞ =
∥∥∥∥ ∫ 1

0

h

|h|
∇M(x+ th)dt

∥∥∥∥
L∞

≤ ∥∇M∥L∞ , (2.58)

so dividing (2.57) by ∥∇Dhu∥ yields

a∥Dh∇u∥ ≤ ∥f∥ + λ∥u∥ + ∥∇M∥L∞∥∇u∥. (2.59)

By Lemma 2.35 this proves that ∇u ∈ H1(Rd,Cd), so, by Proposition 1.21, u ∈ H2(Rd).
By Exercise 11 we thus have M∇u ∈ H1(Rd,Cd), and obtain from the weak form of

the equation (2.44)

⟨f, φ⟩ = ⟨M∇u,∇φ+ λ⟨u, φ⟩ (2.60)
= ⟨− divM∇u+ λu, φ⟩ (2.61)

for all φ ∈ H1(Rd). Since the latter is dense in L2(Rd) this implies that

f + divM∇u+ λu ∈ (H1(Rd))⊥ = {0}, (2.62)

that is, equation (2.41) holds.

Remark 2.37. If the coefficients M have k + 1 bounded derivatives and f ∈ Hk(Rd)
we can iterate the reasoning of Theorem 2.36 and obtain u ∈ Hk+2(Rd).

2.4. Unbounded linear operators
In the previous part we considered bounded operators A ∈ B(H). However, this excludes
differential operators, as, e.g.,

−∆ : H2(Rd) → L2(Rd) (2.63)

is not in B(L2(Rd)) or B(H2(Rd)).
In this part we will extend the theory to such linear differential operators, and general

non-bounded operators.
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2.4. Unbounded linear operators

Definition 2.38. A densely defined operator on a Hilbert space H is a pair A,D(A),
where

• D(A) ⊂ H is a dense subspace,

• A : D(A) → H is a linear map.

Examples 2.39.

a) Let H = ℓ2(N), and

D(A) = c00(N) = {x ∈ ℓ2(N) : xn ̸= 0 for finitely many n ∈ N}. (2.64)

Then for any sequence (an)n∈N ∈ CN, (Ax)n = anxn is a densely defined operator.

b) Let H = L2(R), D(A) = C0
0 (R) and Af = f(0)g for some g ∈ L2(R). This operator

is densely defined as C0
0 (R) is dense in L2(R) [FA, Thm.3.4.2].

c) Let H = L2(R), D(A) = H1(R), then (Af)(x) := a(x)f ′(x) is a densely defined
operator for every a ∈ L∞(R).

Definition 2.40. A densely defined operatorB,D(B) extends A,D(A), ifD(A) ⊂ D(B)
and Bf = Af for all f ∈ D(A). We write A ⊂ B.

If A,D(A) is bounded in the sense of Definition 2.21, then by the B.L.T. theorem
there exists a unique bounded extension A, D(A) = H. In this case we usually identify
A and its canonical extension.

For a linear map A : D(A) → H (with D(A) ⊂ H not necessarily dense), the graph is
given by

G (A) := {(f,Af) : f ∈ D(A)} ⊂ D(A) × H ⊂ H × H. (2.65)
Since A is linear, G (A) is a linear subspace of H ⊕ H.

Definition 2.41. The operator A,D(A) is called closed if the set G (A) is closed in
H × H, i.e., for any sequence (fn)n∈N in D(A) such that fn converges to f ∈ H and Afn

converges to g ∈ H, it holds that f ∈ D(A) and Af = g.
The operator A, D(A) is called closable if it has a closed extension.

Proposition 2.42. A densely defined operator A,D(A) on H is closable if and only if
G (A) is the graph of an operator A,D(A). For every closed extension B of A we have
A ⊂ B.

Proof. Assume first that A is closable, so there exists a closed extension B ⊃ A. We
have

G (A) ⊂ G (A) ⊂ G (B). (2.66)
Since G (B) is the graph of a linear map, it has the property that if (f, g) ∈ G (B), then
(f, h) /∈ G (B) for g ̸= h (i.e., Bf = g is well defined). This property then also holds for
any subset. We may thus define

D(A) :={f ∈ H : ∃gf ∈ H with (f, gf ) ∈ G (A)},
Af =gf .

(2.67)
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2. Linear operators on Hilbert spaces

Clearly A ⊂ B is an operator and G (A) = G (A) is closed, proving the first implication.
The converse is obvious, for if G (A) is the graph of an operator, then A has a closed

extension.

The operator A is the minimal closed extension of A and thus called the closure of A.
Note that in general we do not have D(A) = D(A) (only for bounded A).
Proposition 2.43. Let A,D(A) be densely defined and define the graph norm on D(A)
by

∥f∥D(A) =
√

∥f∥2
H + ∥Af∥2

H = ∥(f,Af)∥H⊕H. (2.68)
Then A : D(A) → H is continuous w.r.t. this norm. Moreover, A is closed if and only
if (D(A), ∥·∥D(A)) is complete.
Proof. It clearly holds that

∥Af∥H ≤
√

∥f∥2
H + ∥Af∥2

H = ∥f∥D(A) , (2.69)

so A : D(A) → H is bounded w.r.t. the graph norm and thus continuous.
Assume now that A is closed and let (fn)n∈N be a Cauchy sequence in (D(A), ∥·∥D(A)).

Then, since ∥f∥H ≤ ∥f∥D(A) (i.e., the embedding of D(A) in H is continuous), (fn)n∈N
is Cauchy in H. By the same reasoning, (Afn)n∈N is also Cauchy in H. Since H is
complete, we have fn → f and Afn → g for some f, g ∈ H. Closedness of A implies that
f ∈ D(A) and Af = g. We then have

lim
n→∞

(
∥fn − f∥2

H + ∥Afn −Af∥H
)

= 0, (2.70)

so (fn) → (f) in D(A) and D(A) is complete.
The converse is immediate from the definitions.

Examples 2.44.
a) The operator of Example 2.39a) is always closable, with

D(A) = {x ∈ ℓ2 : (anxn)n∈N ∈ ℓ2}, (2.71)

since the graph norm is just the weighted ℓ2-norm
(∑

n(1 + |an|2)x2
n

)1/2, which is
complete.

b) The operator of 2.39b) is not closable. We have G (A) = L2(R) × span{g} (which is
not a graph!), since for any f ∈ H, z ∈ C there exists a sequence (fn)n∈N such that
fn ∈ C0

0 (R) with f(0) = z and fn → f in L2.
We want to define the adjoint of a densely defined operator A, D(A) as in the bounded

case. It should satisfy the formula

⟨Af, g⟩ = ⟨f,A∗g⟩. (2.72)

The question is for what vectors f, g. For A ∈ B(H), we could take any f, g ∈ H and
this formula defined A∗ ∈ B(H). For unbounded A we certainly want f ∈ D(A), but we
also need to decide what D(A∗) should be. The following definition chooses D(A∗) in a
maximal way so that the formula holds.
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2.4. Unbounded linear operators

Definition 2.45. Let A,D(A) be densely defined on H. We define the adjoint A∗,
D(A∗) by

D(A∗) := {g ∈ H : ∃hg ∈ H ∀f ∈ D(A) : ⟨Af, g⟩ = ⟨f, hg⟩},
A∗ : D(A∗) → H,
A∗g := hg

Remarks 2.46.

• A∗g is well defined, since if hg exists it is unique, by

∀f ∈ D(A) : ⟨f, hg − h̃g⟩ = 0 =⇒ hg = h̃g, (2.73)

because D(A) is dense.

• The requirement on D(A∗) can be read as: g ∈ D(A∗) ⇔ the linear functional
f 7→ ⟨g,Af⟩ on D(A) extends continuously to H, since then h exists by the Riesz
Representation Theorem.

• A ⊂ B =⇒ B∗ ⊂ A∗, since there are fewer conditions to be met in D(A∗), and
for f ∈ D(B∗) ⊂ D(A∗), g ∈ D(A) ⊂ D(B)

⟨B∗f, g⟩ = ⟨f,Bg⟩ A⊂B= ⟨f,Ag⟩ = ⟨A∗f, g⟩. (2.74)

• D(A∗) is not always dense.

• If D(A∗) is dense we can define A∗∗ = (A∗)∗.

Proposition 2.47. Let A, D(A) be densely defined on H.

a) G (A∗) is closed.

b) D(A∗) is dense if and only if A is closable.

c) If A is closable then A = A∗∗ and A∗ = (A)∗.

Proof. a) Let (gn, hgn) be a sequence in G (A∗) that converges to (g, h) ∈ H × H. Then
for all f ∈ D(A):

⟨Af, gn⟩︸ ︷︷ ︸
→⟨Af,g⟩

= ⟨f, hgn⟩︸ ︷︷ ︸
→⟨f,h⟩

,

so g ∈ D(A∗) and A∗g = h, whence (g, h) ∈ G (A∗).
b) If A∗ is densely defined, then A∗∗ extends A, because for every g ∈ D(A) there

exists h = Ag ∈ H such that

∀f ∈ D(A∗) : ⟨A∗f, g⟩ = ⟨f, h⟩. (2.75)
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2. Linear operators on Hilbert spaces

By a), A∗∗ is closed and thus A is closable.
Assume now that A∗ is not densely defined and consider G (A) = (G (A)⊥)⊥ (compare

Exercise 12). Note that

G (A∗) = {(g, h) ∈ H × H : ∀f ∈ D(A) : ⟨Af, g⟩ − ⟨f, h⟩ = 0}, (2.76)

and since ⟨Af, g⟩ − ⟨f, h⟩ = ⟨(f,Af), (−h, g)⟩H⊕H, we have

G (A)⊥ = {(−A∗g, g) : g ∈ D(A∗)}. (2.77)

Now let 0 ̸= ξ ∈ D(A∗)⊥, and observe that (0, ξ) ∈ (G (A)⊥)⊥, but certainly not in the
graph of any linear operator.

c) We have by (2.76),(2.77)

G (A∗∗) = {(g, h) ∈ H × H : ∀f ∈ D(A∗) : ⟨A∗f, g⟩ − ⟨f, h⟩ = 0} = (G (A)⊥)⊥, (2.78)

so A = A∗∗. This, together with a), implies

A
∗ = A∗∗∗ = A∗ a)= A∗. (2.79)

Definition 2.48. We call a densely defined operator

• symmetric if A ⊂ A∗, that is,

∀f, g ∈ D(A) : ⟨Af, g⟩ = ⟨f,Ag⟩. (2.80)

• self-adjoint if A = A∗, that is A is symmetric and D(A∗) = D(A).

Theorem 2.49. Let A, D(A) be symmetric. The following are equivalent

1) A = A∗

2) A is closed and ker(A∗ + i) = ker(A∗ − i) = {0}

3) ran(A+ i) = ran(A− i) = H.

Proof. 1) =⇒ 2): If A is self-adjoint, then A = A∗ is closed by Theorem 2.47. If
moreover f ∈ ker(A∗ ± i), then (e.g. for “−”)

i⟨f, f⟩ = ⟨f,A∗f⟩ A=A∗
= ⟨Af, f⟩ = −i⟨f, f⟩, (2.81)

so f = 0.

2) =⇒ 3) First note that ker(A∗ + i) = ran(A− i)⊥, since

f ∈ ker(A∗ + i) ⇔ ∀g ∈ D(A) : ⟨(A∗ + i)f, g⟩ = 0 ⇔ ∀g ∈ D(A)⟨f, (A− i)g⟩ = 0.
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2.5. Spectrum and resolvent

Consequently, ker(A∗ + i) = {0} =⇒ ran(A− i) = H and the range of A± i is at least
dense. Now let g ∈ H and choose fn so that (A − i)fn → g. For all f ∈ D(A) we have
the inequality

∥(A− i)f∥2 = ⟨(A− i)f, (A− i)f⟩ = ∥Af∥2 + ∥f∥2 + 2Re⟨if,Af⟩ ≥ ∥f∥2 . (2.82)

Thus the sequence fn is Cauchy and converges to some f ∈ H. Since A is closed,
f ∈ D(A) and Af = g + if , whence g ∈ ran(A− i).

3) =⇒ 1) To show that A = A∗ we need to prove that A∗ ⊂ A, since A ⊂ A∗ is assumed.
Let f ∈ D(A∗). Since A− i is onto, there is g ∈ D(A) s.th. (A∗ − i)f = (A− i)g. Since
A ⊂ A∗, we thus have (A∗ − i)(f − g) = 0. Then for every h ∈ D(A):

0 = ⟨h, (A∗ − i)(f − g)⟩ = ⟨(A+ i)h, (f − g)⟩, (2.83)

and thus f = g ∈ D(A) because ran(A+ i) = H. Thus D(A∗) ⊂ D(A) and A = A∗ since
Af = A∗f for f ∈ D(A).

Examples 2.50.

1) The Laplacian ∆ is self-adjoint on D(∆) = H2(Rd). To see this, we can use the
criterion 3) above. Let f ∈ L2(Rd). Then

g := F −1(−p2 ± i)−1f̂(p) ∈ H2(Rd) (2.84)

and
(∆ ± i)g = f. (2.85)

2) The operator defined by (Ax)n := anxn in Example 2.39 is not self-adjoint, since it is
not closed. Its closure (see Example 2.44) is self-adjoint if (an)n∈N is real (compare
Problem 23).

3) The operator A = −∆ with domain D(A) = C∞
0 (R+) ⊂ L2(R+) is not self-adjoint,

nor is its closure. To see this, let f(x) = e−
√

ix (where Re
√

i > 0) and observe that
for all g ∈ C∞

0 we can integrate by parts without boundary terms, so

−⟨f,∆g⟩ = −
∫ ∞

0
f̄(x)∆g(x)dx =

∫ ∞

0
(−∆f̄(x))g(x)dx = ⟨(−if),∆g⟩. (2.86)

Thus f ∈ D(A∗) and (A∗ + i)f = 0, and also f ∈ ker(Ā∗ + i) by Proposition 2.47.

2.5. Spectrum and resolvent

In this section A, D(A) is a densely defined operator on the complex Hilbert space H.
This includes the bounded case A ∈ B(H) where D(A) = H.
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2. Linear operators on Hilbert spaces

Definition 2.51. Let A,D(A) be densely defined on H. The set

ρ(A) := {z ∈ C : A− z : D(A) → H is bijective, and (A− z)−1 is bounded} (2.87)

is called the resolvent set of A. For z ∈ ρ(A) the operator

Rz(A) := (A− z)−1 (2.88)

is called the resolvent.

Definition 2.52. The complement σ(A) := C \ ρ(A) is the spectrum of A. We define

• The point spectrum

σp(A) := {z ∈ C : A− z is not one-to-one}

• The continuous spectrum

σc(A) := {z ∈ C : A− z is one-to-one, ran(A− z) ̸= H but ran(A− z) = H}

• The residual spectrum

σr(A) := {z ∈ C : A− z is one-to-one but ran(A− z) ̸= H}.

Examples 2.53.

1) If dim H < ∞ then the spectrum coincides with the set of eigenvalues σ(A) = σp(A),
since if z ∈ C is injective then

dim ran(A− z) = dim H − dim ker(A− z) = dim H, (2.89)

so A−z is bijective. Note that σ(A) is not empty since we assume H to be a complex
vector space.

2) Take H = ℓ2 and (Ax)n = anxn as in Example 2.39a). Then σ(A) = C, since
ran(A − z) ⊂ c00 ̸= H. However σ(A) = σp(A) = ∪n{an}, since for z not an
accumulation point of (an)N the formula(

Rz(A)x
)

n
= (an − z)−1xn (2.90)

defines the resolvent. Thus σ(A) depends strongly on D(A)!

Proposition 2.54. Let A, D(A) be closed. Then

σ(A) = σp(A) ∪ σc(A) ∪ σr(A). (2.91)

Proof. One needs to prove that if A − z : D(A) → H is bijective, then the inverse
(A− z)−1 is continuous. Using that D(A) with the grapgh norm is a Banach space, this
follows from a fundamental theorem in functional analysis, the open mapping theorem,
that we will not prove here, see [Bre, Cor.2.7].
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2.5. Spectrum and resolvent

Lemma 2.55 (Neumann series). Let A ∈ B(H) with ∥A∥ < 1. Then 1 − A is bijective
and

(1 −A)−1 =
∞∑

k=0
Ak.

Proof. We show first that the Neumann series converges, and then that it is the inverse
of 1 −A. Since ∥Ak∥ ≤ ∥A∥k, we have

∥∥∥ m∑
k=n

Ak
∥∥∥ ≤

∞∑
k=n

∥A∥k = ∥A∥n

1 − ∥A∥
. (2.92)

Hence the sequence of partial sums is Cauchy and by completeness of B(H) (Proposi-
tion 2.27) it converges to some operator B ∈ H. Then

AB =
∞∑

k=1
Ak = B − 1 = BA, (2.93)

so
(1 −A)B = 1 = B(1 −A), (2.94)

and thus B = (1 −A)−1.

Theorem 2.56. Let A,D(A) be densely defined on H. The resolvent set ρ(A) is open,
and z 7→ Rz(A) defines an analytic function ρ(A) → B(H). Moreover, for z, w ∈ ρ(A)
the first resolvent formula

Rz(A) −Rw(A) = (z − w)Rz(A)Rw(A) (2.95)

holds, and, in particular, Rz(A) and Rw(A) commute.

Proof. If ρ(A) = ∅ (which is possible!) there is nothing to prove, so assume there is
z0 ∈ ρ(A). We have

Rz0(A)(A− z) = 1 −Rz0(A)(z − z0) = (A− z)Rz0(A). (2.96)

For |z−z0| < ∥Rz0(A)∥−1, the operator on the right hand side is invertible by a Neumann
series, (

1 −Rz0(A)(z − z0)
)−1

=
∞∑

k=0
Rz0(A)k(z − z0)k. (2.97)

Thus (
1 −Rz0(A)(z − z0)

)−1
Rz0(A)(A− z) = 1 (2.98)

and we have a left inverse for z − A. The same argument also provides a right inverse,
and thus

B(z0, ∥Rz0(A)∥−1) ⊂ ρ(A) (2.99)

and ρ(A) is open. Moreover, Rz(A) is given by a convergent power series in z − z0, so
z 7→ Rz(A) is analytic.
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The resolvent formula follows from the simple calculation

Rz(A) −Rw(A) = Rz(A)(A− w)Rw(A) −Rz(A)(A− z)Rw(A) = (z − w)Rz(A)Rw(A).
(2.100)

Proposition 2.57. Let A, D(A) be a symmetric operator on the complex Hilbert space
H. Then the spectrum of A is one of the following

1) The complex plane;

2) The closed upper half plane;

3) The closed lower half plane;

4) A subset of the real line.

Proof. For symmetric A, f ∈ D(A) and z = λ+ iµ ∈ C we have

∥(z −A)f∥2 = ∥(λ−A)f∥2 + µ2∥f∥2 − 2Re⟨iµf,Af⟩ ≥ µ2∥f∥2. (2.101)

Now assume that ρ(A) ̸= ∅, i.e. we are not in the case 1). If z ∈ R ∩ ρ(A), then by
Theorem 2.56 there are points in ρ(A) in both the upper and lower half planes. We can
conclude the proof by showing that if ρ(A) contains a point in the upper (lower) half
plane, then the whole open half plane is contained in the resolvent set. To see this, let
z ∈ ρ(A) with Imz ̸= 0. Then taking (2.101) with f = Rz0(A)g, g ∈ H, gives

∥Rz(A)g∥ ≤ |Imz|−1∥g∥, (2.102)

so
∥Rz(A)∥ ≤ |Imz|−1. (2.103)

By (2.99) the resolvent set then contains the ball B(z, |Imz|) which lies in the same half
plane as z and touches the real line. Applying the same reasoning to further points in
this ball (e.g., λ + 3/2iµ, λ ± µ/2 + iµ), we can enlarge the known resolevent set until
it covers the whole half plane. Hence the resolvent set is either empty, an open half
plane, or contains both open half planes, which corresponds to the statements on the
spectrum.

Corollary 2.58. If A, D(A) is symmetric and there exists λ ∈ R ∩ ρ(A) then A is
self-adjoint.

Proof. If λ ∈ R∩ρ(A) then by Proposition 2.57 the resolvent set of A contains the upper
and lower half planes, i.e. we are in case 4) above. But then ±i ∈ ρ(A), so ran(A±i) = H
and thus A is self-adjoint by Theorem 2.49.
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2.5. Spectrum and resolvent

Example 2.59. The Corollary shows that the operator A = divM∇ with domain
D(A) = H2(Rd) is self-adjoint under the hypothesis of Theorem 2.36 (M elliptic with
one bounded derivative). First, A is symmetric if for all x ∈ Rd the matrix M(x) is
self-adjoint, since then for f, g ∈ H2(Rd)

⟨f,Ag⟩ = −
∫

⟨∇f(x),M(x)∇g(x)⟩Cddx = −
∫

⟨M(x)∇f(x),∇g(x)⟩Cddx = ⟨Af, g⟩.
(2.104)

Moreover, Theorem 2.36 states that for all f ∈ L2(Rd), λ > 0 there exists a unique
solution of

(λ− divM∇)u = f, (2.105)

and u ∈ H2(Rd) = D(A), so (0,∞) ⊂ ρ(A).
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3. Linear evolution equations

In this chapter, we will study the “initial value problem”, also called the abstract Cauchy
problem 

du
dt = Au

u(0) = u0

(3.1)

for suitable densely-defined operator A, D(A) on H.

3.1. The exponential of a bounded operator

The simplest case for (3.1) is when A ∈ B(H) is bounded (and thus D(A) = H). This
case is very similar to linear ODEs.

Lemma 3.1. Let A ∈ B(H). Then the exponential series

eA :=
∞∑

j=0

Aj

j!

converges in B(H), and
∥eA∥ ≤ e∥A∥.

Proof. We have
∥Aj∥ ≤ ∥A∥j , (3.2)

and thus ∥∥∥ m∑
j=n

Aj

j!
∥∥∥ ≤

m∑
j=n

∥A∥j

j! ≤ e∥A∥ −
n−1∑
j=0

∥A∥j

j! . (3.3)

The right hand side converges to zero for n → ∞ since the exponential series of real
numbers converges. The sequence of partial sums is thus Cauchy in B(H) and by com-
pleteness it has a limit eA.

Theorem 3.2. Let A ∈ B(H). For every u0 ∈ H,

u = etAu0 ∈ C∞(R,H) (3.4)

solves the the Cauchy problem (3.1). This solution is the unique maximal solution
to (3.1), that is, if v ∈ C1((−ε, ε),H) solves (3.1), then v = u|(−ε,ε).
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3.1. The exponential of a bounded operator

Proof. This proof is essentially the same as for linear ODEs.
To start with, we have

u(0) = e0u0 = u0. (3.5)
We now show that u ∈ C1(R,H) with derivative Au, so u solves (3.1). We have

u(t+ h) − u(t) − hAu(t)
h

= 1
h

∞∑
j=0

(t+ h)j − tj

j! Aju0 −A
∞∑

j=0

tj

j!A
ju0

= 1
h

∞∑
j=0

(t+ h)j+1 − tj+1 − (j + 1)htj
(j + 1)! Aj+1u0 (3.6)

The term with j = 0 vanishes, and for j ≥ 1 we have by the mean value theorem

(t+ h)j+1 − tj+1 − (j + 1)htj τj∈[t,t+h]= h(j + 1)(τ j − tj)
σj∈[t,τj ]= h(τj − t)j(j + 1)σj−1, (3.7)

so since |τj − t| ≤ |h|, |σj | ≤ |t| + |h|, we have∣∣∣∣e(t+h)Au0 − etAu0 − h

h

∣∣∣∣ ≤ |h|∥A∥2e(|t|+|h|)∥A∥∥u0∥, (3.8)

which converges to zero as h → 0, so
deAtu0

dt = AeAtu0, (3.9)

which proves the claim. Since u′(t) = eAtAu0 has the same form, we can iterate this and
obtain that u ∈ C∞(R,H).

Now assume that v : (−ε, ε) → H solves (3.1). Then for all |t| ≤ ε

∥u(t) − v(t)∥2 =
∫ t

0

d
ds∥u(s) − v(s)∥2ds

=
∫ t

0
2Re⟨(u(s) − v(s)), A(u(s) − v(s))⟩ds

≤
∫ t

0
2∥A∥∥u(s) − v(s)∥2ds. (3.10)

Thus by Gronwall’s inequality, this is less than the solution to the equation x′ = 2∥A∥x,
x(0) = 0, which vanishes. This proves uniqueness of u.

Corollary 3.3. For t, s ∈ R we have e(t+s)A = etAesA

Proof. While this can also be seen from the exponential series, it follows immediately
from uniqueness of the solutions to (3.1) by the following argument. Let f ∈ H and
consider the functions

u(t) = e(t+s)Af

v(t) = etAesAf.
(3.11)

Both solve (3.1) with initial condition v(0) = eAsf = u(0), so they must be equal. Since
f was arbitary this proves equality of the operators.
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3. Linear evolution equations

3.2. The Hille-Yosida theorem
In this section we will prove a theorem that ensures the existence and uniqueness of
solutions to the abstract Cauchy problem under suitable hypothesis on the generators
A.

The key condition is that the generator should be (maximal) dissipative, which ex-
cludes directions of exponential growth for the solutions. With this condition the solu-
tions will satisfy ∥u(t)∥ ≤ ∥u0∥, instead of the general bound ∥u(t)∥ ≤ e∥A∥, A ∈ B(H)
which cannot be generalised to unbounded operators.

Definition 3.4. A densely defined operator A, D(A) on a Hilbert space H is called
dissipative if

∀f ∈ D(A) : Re⟨f,Af⟩ ≤ 0. (3.12)

The operator is called maximal dissipative if additionally A− 1 is surjective, i.e.

ran(A− 1) = H. (3.13)

Question 3.5. Which of the following operators with domain D = H2(Rd) is dissipa-
tive?

1) A1 = ∆;

2) A2 = −∆;

3) A3 = i∆.

Examples 3.6.

1) The operator A = divM∇, D(A) = H2(Rd) from Section 2.3 with M : Rd → Cd×d

positive definite is dissipative since

⟨f,Af⟩ = −
∫
Rd

⟨∇f(x),M(x)∇f(x)⟩dx ≤ 0. (3.14)

If M is uniformly elliptic (cf. (2.42)) and satisfies the hypothesis of Theorem 2.36
then it is maximal dissipative, since λ−A is onto for all λ > 0 by Theorem 2.36.

2) If H, D(H) is symmetric, then A = iH is dissipative, since

⟨f,Af⟩ = i⟨f,Hf⟩ ∈ iR. (3.15)

If H is self-adjoint, then by 2.49 A is maximal dissipative because

ran(A− 1) = ran(iH − 1) = ran(H + i) 2.49= H. (3.16)

Moreover, −A is also maximal dissipative.

Proposition 3.7. Let A, D(A) be dissipative.
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3.2. The Hille-Yosida theorem

a) For every z ∈ C with Re(z) > 0, A− z is injective;

b) If there exists λ0 > 0 such that A− λ0 is onto, then A is closed,

σ(A) ⊂ {z ∈ C : Rez ≤ 0},

and for all z with Rez > 0
∥Rz(A)∥ ≤ 1

Rez .

Proof. a) Let z = λ+ iµ with λ > 0. Clearly, A− iµ is also dissipative, so it is sufficient
to prove the statement for µ = 0. We have for f ∈ D(A), λ > 0

∥(A− λ)f∥2 = ∥Af∥2 + λ2∥f∥2 − 2λRe⟨f,Af, ⟩
≥ λ2∥f∥2. (3.17)

This shows that (A− λ)f = 0 =⇒ f = 0, so ker(A− λ) = {0}.
b) By a) and the fact that A − λ0 is onto, we have that A − λ0 is bijective. Apply-

ing (3.17) with λ = λ0 and f = (A− λ)−1g, g ∈ H we find

∥g∥2 ≥ λ2
0∥(A− λ0)−1g∥2, (3.18)

so (A − λ0)−1 ∈ B(H) and λ0 ∈ ρ(A). By Problem 22, A is closed. We also have
∥Rλ0(A)∥ ≤ λ−1

0 , and by Theorem 2.56 (in particular (2.99)) we thus have B(λ0, λ0) ⊂
ρ(A). Let z = λ + iµ ∈ ρ(A) with λ > 0. Applying (3.17) to Aµ = A − iµ with
f = Rz(A)g , g ∈ H we find

∥g∥2 ≥ Re(z)2∥Rz(A)g∥2. (3.19)

Using this bound on the norm of the resolvent, we can then expand around additional
points and enlarge the known resolvent set until it covers the right half plane. The
spectrum is thus contained in the (closed) left half plane.

Corollary 3.8. Let A, D(A) be dissipative. The following are equivalent

1) A is maximal dissipative;

2) A− z is surjective for all z ∈ C with Rez > 0;

3) A− λ is surjective for some λ > 0.

We will now work toward solving the abstract Cauchy problem (3.1) for a generator
A,D(A) that is maximal dissipative and an initial contition u0 ∈ D(A).

The idea is to use the spectral information on A we have obtained and approximate
A by bounded operators, the so-called Yosida-approximants,

An := −nARn(A) (3.20)

Lemma 3.9. Let A,D(A) be maximal dissipative and define An by (3.20) for n ∈ N.
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3. Linear evolution equations

a) An ∈ B(H) and ∥An∥ ≤ n;

b) nRn(A) + n−1An = −1;

c) An is dissipative;

d) For all f ∈ D(A) we have ∥Anf∥H ≤ ∥Af∥H;

e) For all f ∈ H we have limn→∞ ∥f + nRn(A)f∥H = 0;

f) For all f ∈ D(A) we have limn→∞ ∥Af −Anf∥H = 0.

Proof. a) We have

An = −(A− n)nRn(A) − n2Rn(A) = −n2Rn(A) − n. (3.21)

Hence An ∈ B(H) and ∥An∥ ≤ 2n since ∥Rn(A)∥ ≤ n−1 by Proposition 3.7. The
improved bound ∥An∥ ≤ n follows from c) and Problem 28.

b) This follows by dividing (3.21) by n.

c) By b) we have for f ∈ H

Re⟨f,Anf⟩ = Re⟨−n−1An − nRn(A)f,Anf⟩
= −n−1∥Anf∥2 + n2Re⟨Rn(A)f,ARn(A)f⟩ ≤ 0. (3.22)

d) Since ∥nRn(A)∥ ≤ 1 we have for f ∈ D(A) (since Rn(A) is both left and right inverse
of A− n)

∥Anf∥ (3.21)= ∥n2Rn(A)f + nf∥ = ∥nRn(A)Af∥ ≤ ∥Af∥. (3.23)

e) Let first f ∈ D(A). Then by b)

∥f + nRn(A)f∥ = n−1∥Anf∥ ≤ n−1∥Af∥ n→∞→ 0. (3.24)

For the general case f ∈ H let ε > 0 and choose g ∈ D(A) with ∥f − g∥ < ε (using
density of D(A)). Then

∥f + nRn(A)f∥ ≤ ∥g + nRn(A)g∥ + ∥(1 + nRn(A))(f − g)∥ ≤ n−1∥Ag∥ + 2ε, (3.25)

so choosing n large enough this is less than 3ε, which proves the claimed convergence.

f) We have
∥Af −Anf∥ = ∥(1 + nRn(A))Af∥, (3.26)

so the claim follows from e).
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3.2. The Hille-Yosida theorem

Theorem 3.10 (Hille-Yosida). Let A,D(A) be maximal dissipative. For every u0 ∈
D(A) there exists a unique function

u ∈ C1([0,∞),H) ∩ C([0,∞), D(A)) (3.27)

satisfying (3.1). Moreover, the map

ΦA : D(A) → C([0,∞),H)
u0 7→ u

is linear and satisfies
∥ΦAu0∥C([0,∞),H) ≤ ∥u0∥H.

It thus extends uniquely to a continuous map ΦA : H → C([0,∞),H) of norm one.

Proof. Step 1 (uniqueness) Assume u, ũ are two solutions to (3.1). Then u(0)−ũ(0) =
0 and

d
dt∥u− ũ∥2 = 2Re⟨u− ũ, A(u− ũ)⟩ ≤ 0. (3.28)

Thus t 7→ ∥u(t) − ũ(t)∥ is non-increasing, so

0 ≤ ∥u(t) − ũ(t)∥ ≤ ∥u(0) − ũ(0)∥ = 0

and the solution is unique.
Step 2 (approximate solutions un)
Let un(t) = ΦAnu(t) = eAntu0 be the unique solution of

dun

dt = Anun , t > 0

un(0) = u0

(3.29)

(cf. Thm. 3.2).
First note that, since An is dissipative, we have for all n ∈ N, t ≥ 0,

d
dt∥un(t)∥2 = 2Re⟨un(t), Anun(t)⟩ ≤ 0. (3.30)

Consequently,
∥un(t)∥ ≤ ∥u0∥. (3.31)

Since An is bounded, we may apply this reasoning with inital condition v0 = Au0 and
obtain with Lemma 3.9d)

∥Anun(t)∥ = ∥eAntAnu0∥ ≤ ∥Anu0∥ ≤ ∥Au0∥. (3.32)

Step 3 (approximation of u) We now prove that un converges to some limit u
uniformly on compact invervalls [0, t0] ⊂ [0,∞).
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3. Linear evolution equations

Let n,m ∈ N. Obviously we have un(0) = u0 = um(0), and by the fundamental
theorem of calculus

∥un(t) − um(t)∥2 =
∫ t

0
2Re⟨Anun(s) −Amum(s), un(s) − um(s)⟩ds. (3.33)

Now by Lemma 3.9b), we have (for fixed s, which we drop from the notation)

Re⟨Anun −Amum, un − um⟩
= Re⟨Anun −Amum,−nRn(A)un − n−1Anun +mRm(A)um +m−1Amum⟩
= Re⟨A(nRn(A)un −mRm(A)um), (nRn(A)un −mRm(A)um)⟩︸ ︷︷ ︸

≤0

⟩

+ Re⟨Anun −Amum,−n−1Anun +m−1Amum⟩
≤ (∥Anun∥ + ∥Amum∥)(n−1∥Anun∥ +m−1∥Amum∥). (3.34)

By (3.32) we have for all 0 ≤ t ≤ t0

∥un(t) − um(t)∥2 ≤
∫ t

0
4∥Au0∥2(n−1 +m−1)ds ≤ 4t0(n−1 +m−1)∥Au0∥2. (3.35)

This proves that un(t) is a Cauchy sequence for every t and thus converges to a limit
u(t) ∈ H. Since the bound above is uniform for t ≤ t0, the convergence is uniform and
thus t 7→ u(t) is continuous, i.e.,

u ∈ C([0,∞),H). (3.36)

Moreover, we have
∥u(t)∥ = lim

n→∞
∥un(t)∥ ≤ ∥u0∥. (3.37)

The map u0 7→ u is also linear since u0 7→ un is linear for every n. We have thus shown
that u0 7→ ΦAu0 = u is linear and bounded, and can thus be extended to u0 ∈ H.

Step 4 (differentiability) It remains to prove that, for u0 ∈ D(A), u is differentiable
and a solution to (3.1). For n ∈ N we have

d
dtun(t) = Ane

Antu0 = eAntAnu0. (3.38)

Now

∥eAntAnu0 − ΦA(t)Au0∥ ≤ ∥eAnt(Anu0 −Au0)∥ + ∥(ΦA(t) − eAnt)Au0∥. (3.39)

The first term converges to zero uniformly in t by (3.31) and Lemma 3.9f). The second
term should converge to zero aswell since un → u. However we have only proved this
for u0 ∈ D(A) so far, and Au0 /∈ D(A), in general. To close this gap, let ε > 0 and
v0 ∈ D(A) with ∥v0 −Au0∥ < ε. Then

∥(ΦA(t)−ΦAn(t))Au0∥ ≤ ∥(ΦA(t)−ΦAn(t))v0∥+∥(ΦA(t) − ΦAn(t))(Au0 − v0)∥︸ ︷︷ ︸
<2ε

. (3.40)
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3.2. The Hille-Yosida theorem

By the convergence of solutions with u0 ∈ D(A) proved above, we thus have for n large
enough

sup
0≤t≤t0

∥ΦAn(t)Anu0 − ΦA(t)Au0∥ < 4ε. (3.41)

Thus d
dtun converges uniformly to ΦAAu0, which must then be equal to d

dtu, so

u ∈ C1([0,∞),H). (3.42)

Step 5 (u is a solution) From what we have proved so far, we know that for t ≥ 0

lim
n→∞

d
dtun(t) = lim

n→∞
Anun(t) = − lim

n→∞
AnRn(A)un(t) = d

dtu(t). (3.43)

Using that un(t) and −nRn(A)u(t) both converge to u(t) (by Lemma 3.9e)) we have for
fixed t > 0

∥nRn(A)un(t) + u(t)∥ ≤ ∥nRn(A)(un(t) − u(t))∥ + ∥nRn(A)u(t) + u(t)∥
≤ ∥nRn(A)∥︸ ︷︷ ︸

≤1

∥un(t) − u(t)∥ + ∥nRn(A)u(t) + u(t)∥, (3.44)

which tends to zero for n → ∞. We thus have

−nRn(A)un(t) → u(t)

−AnRn(A)un(t) → d
dtu(t). (3.45)

Since A is closed by Proposition 3.7, this implies that u(t) ∈ D(A) and d
dtu(t) = Au(t),

i.e., u is indeed a solution to (3.1). Moreover, since Au equals the (continuous) derivative
of u, we have

u ∈ C([0,∞), D(A)). (3.46)

This completes the proof.

Remark 3.11. The Theorem says that the abstract Cauchy problem (3.1) is well posed
(in the sense of Hadamard) in D(A), that is, we have

1. Existence of a solution for every initial datum,

2. Uniqueness of this solution,

3. Continuous dependence of the solution on the initial data (by boudedness of ΦA).

Let A, D(A) be maximal dissipative and t ≥ 0. We define a bounded operator etA on
H by

eAtf := (ΦAf)(t),

i.e., eAtf is the solution to the Cauchy problem (3.1) with initial condition f evaluated
at time t.
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3. Linear evolution equations

We caution that eAt is in general not given by the exponential series, which might not
converge. Moreover, it is only defined for t ≥ 0, since Theorem 3.10 only gives existence
of solutions for positive time. It could be defined for t ≤ 0 if −A is maximal dissipative.

Let A, D(A) be maximal dissipative and t ≥ 0. We define a bounded operator etA on
H by

eAtf := (ΦAf)(t),

i.e., eAtf is the solution to the Cauchy problem (3.1) with initial condition f evaluated
at time t.

We caution that eAt is in general not given by the exponential series, which might not
converge. Moreover, it is only defined for t ≥ 0, since Theorem 3.10 only gives existence
of solutions for positive time. It could be defined for t ≤ 0 if −A is maximal dissipative.

Corollary 3.12. Let A, D(A) be maximal dissipative and t, s ≥ 0, then

e(t+s)A = etAesA. (3.47)

Proof. This follows from uniqueness of solutions as in Corollary 3.3.

The existence result we have proved is actually optimal, in the following sense.

Theorem 3.13 (Hille-Yosida, part two). Assume that the family of bounded operators
T (t), t ≥ 0, forms a strongly continuous semi-group, that is, we have

1) T (0) = 1,

2) T (t+ s) = T (t)T (s),

3) ∀f ∈ H : limt→0 T (t)f = f .

Assume moreover that ∥T (t)∥ ≤ 1 for all t ≥ 0. Then there exists a maximal dissipative
operator A,D(A) so that T (t) = etA.

Proof. We give a sketch of the proof, see [RS2, Thm.X.47a] for details.
We define

D(A) =
{
f ∈ H : lim

t→0
t−1(1 − T (t))f exists

}
,

Af = lim
t→0

d
dt
∣∣∣
t=0

T (t)f.
(3.48)

The task is then tow show that D(A) is dense, A is maximal dissipative, and etA = T (t).
To show density of D(A), one may set for s > 0, f ∈ H

fs = 1
s

∫ s

0
T (t)fdt. (3.49)

One can check that lims→0 fs = f and fs ∈ D(A), so D(A) is dense. One also checks
that A is closed. Moreover, using the semi-group porperty 2), one can see that

d
dtT (t)f = AT (t)f, (3.50)
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3.3. Applications of the Hille-Yosida theorem

so T (t)f solves the Cauchy problem with initial datum f . The claim thus follows once
we show that A is maximal dissipative, by uniqueness of the solution.

To start with, A is dissipative since for f ∈ D(A)

2Re⟨f,Af⟩ = d
dt
∣∣∣
t=0

∥T (t)f∥2 ≤ 0, (3.51)

as ∥T (t)f∥ ≤ ∥f∥. To show that 1 ∈ ρ(A), we write a formula for the resolvent by a
Laplace transform

⟨g,Rf⟩ := −
∫ ∞

0
e−t⟨g, T (t)f⟩dt. (3.52)

The integral makes sense for g, f ∈ H because ∥T (t)∥ ≤ 1, and for all f ∈ D(A), g ∈ H

⟨g, (A− 1)Rf⟩ = −
∫ ∞

0
e−t⟨g,AT (t)f⟩dt+

∫ ∞

0
e−t⟨g, T (t)f⟩dt = ⟨g, f⟩, (3.53)

by integration by parts. Thus (A−1) has dense range, and together with closedness this
implies that it is maximal dissipative (compare Theorem 2.49).

It is easy to generalise this result to operators with spectrum in the half plane {z ∈
C : Re(z) ≤ µ} satisfying

Re⟨f,Af⟩ ≤ µ∥f∥2. (3.54)
for some µ ∈ R. By Proposition 3.7 then A − µ is maximal dissipative. It is clear that
u is a solution to (3.1) if and only if

u(t) = eµtet(A−µ)u0. (3.55)

Corollary 3.14. Let A, D(A) be densely defined, satisfy (3.54) for some µ ∈ R and
assume that A− z is onto for some z with Rez > µ. Then (3.55) is the unique solution
to the Cauchy Problem (3.1). This solution satisfies

∥u(t)∥H ≤ eµt∥u0∥H (3.56)

3.3. Applications of the Hille-Yosida theorem
3.3.1. The Schrödinger equation
We will now study the Cauchy problem for the Schrödinger equation with potential idudt = −∆u+ V u , t > 0,

u(0) = u0

(3.57)

where V : Rd → R is a real valued potential that acts as an operator of multiplication.
Since the quantity |u(t, x)|2 represents the probabilty density for the position of a particle
(or the configuration of a system) at time t, we additionally want that∫

|u(t, x)|2dx = ∥u(t)∥2 = 1 (3.58)
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3. Linear evolution equations

holds for all t. This is equivalent to self-adjointness of the operator H = −∆ + V on a
suitable domain. For this case, we have as a Corollary to the Hille-Yosida theorem

Corollary 3.15. Let H,D(H) be self-adjoint and u0 ∈ D(H). Then there exists a
unique solution

u ∈ C(R, D(H)) ∩ C1(R,H) (3.59)

of the Cauchy problem  idudt = Hu , t > 0

u(0) = u0

(3.60)

Moreover, the solution operator e−itH is unitary.

Proof. Existence and uniquencess for t ≥ 0 follows from the Hille-Yosida theorem, since
A = −iH is maximal dissipative. For t ≤ 0, consider v(t) = u(−t), which should solve

dv
dt (t) = −du

dt (−t) = iHv(t). (3.61)

Since A = iH is also maximal dissipative, existence and uniqueness of v follows.
The solution operator e−itH ∈ B(H) is thus defined for every t ∈ R. Moreover, for

u0 ∈ D(H) we have
d
dt∥u(t)∥2 = 2Re⟨u(t),−iHu(t)⟩ = 0, (3.62)

so
∥e−itHu0∥ = ∥u0∥. (3.63)

The unique extension of e−itH := U thus satisfies U∗U = 1. Now let u, v ∈ D(H) and
define u(t) := (e−itH)∗u. Then

d
dt⟨u(t), v⟩ = d

dt⟨u, e
−itHv⟩ = ⟨u,−e−itH iHv⟩ = ⟨iHu(t), v⟩. (3.64)

Hence (e−itH)∗ = eitH , since ∥eitHu∥ = ∥u∥ we have UU∗ = 1 and e−itH is unitary.

Our task is thus to find hypothesis on V that ensure self-adjointness of −∆ + V on
a suitable domain – usually H2(Rd). The following proposition is extremely useful for
studying operators that can be decomposed into a dominant part (usually the part with
the highest order derivativies) which is known to be maximal dissipative (self-adjoint),
and a secondary part which can be bounded by the dominant one.

Proposition 3.16. Let A, D(A) be a maximal dissipative operator and B, D(B) dissi-
pative with D(A) ⊂ D(B). Assume that there exists 0 ≤ ε < 1 and C > 0 so that for all
f ∈ D(A)

∥Bf∥ ≤ ε∥Af∥ + C∥f∥.

Then A+B with domain D(A+B) = D(A) is maximal dissipative.
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3.3. Applications of the Hille-Yosida theorem

Proof. First note that A+B is defined on D(A) and for f ∈ D(A)

Re⟨f, (A+B)f⟩ = Re⟨f,Af⟩ + Re⟨f,Bf⟩ ≤ 0, (3.65)

since both are dissipative. Hence A + B is densely defined and dissipative. By Corol-
lary 3.8 it is now sufficent to prove that A+B − λ is onto for some λ > 0.

Using the hypothesis, Proposition 3.7 and Exercise 10.1 we obtain

∥BRλ(A)∥ ≤ ε ∥ARλ(A)∥ + C ∥Rλ(A)∥ ≤ ε+ C

λ
. (3.66)

If ε+C/λ < 1, the bounded operator 1+BRλ(A) is thus invertible by a Neumann series.
Since A− λ is onto, then so is

(1 +BRλ(A)) (A− λ) = A+B − λ. (3.67)

This completes the proof.

Corollary 3.17 (Kato-Rellich). Let H, D(H) be self-adjoint and K, D(K) symmetric
with D(H) ⊂ D(K). Assume that there exists 0 ≤ ε < 1 and C > 0 so that for all
f ∈ D(H)

∥Kf∥ ≤ ε∥Hf∥ + C∥f∥.
Then H +K with domain D(H +K) = D(H) is self-adjoint.

Proof. Apply Proposition 3.16 to A = iH, B = iK.

Examples 3.18.
a) Let V ∈ L∞(R,R). Then the hypothesis of Corollary 3.17 are satisfied with ε = 0

and C = ∥V ∥∞. Hence H = −∆ + V is self-adjoint on D(H) = H2(Rd). We can
thus solve the Schrödinger equation for every bounded potential.

b) Let d ≤ 3 and V ∈ L2(Rd,R). By Sobolev’s Lemma we know that H2(Rd) ⊂ L∞(Rd)
for d ≤ 3. We can bound

∥V f∥L2(Rd) ≤ ∥V ∥L2∥f∥L∞ . (3.68)

Moreover, proceeding as in the proof of Sobolev’s Lemma, we have for δ > 0

∥f∥∞ ≤ (2π)−d/2∥f̂∥L1 ≤ (2π)−d/2∥(1 + δp2)f̂∥L2∥(1 + δp2)−1∥L2 . (3.69)

Since
∥(1 + δp2)−1∥2

L2 =
∫
Rd

dp
(1 + δp2)2 = δ−d/2

∫
Rd

dp
(1 + p2)2 , (3.70)

we thus have
∥V f∥L2(Rd) ≤ C(δ1−d/4∥ − ∆f∥ + δ−d/4∥f∥L2), (3.71)

with
C = (2π)−d/2∥V ∥L2∥(1 + p2)−1∥2

L2 . (3.72)
Since 1 − d/4 > 0 we can make the constant in front of ∥ − ∆f∥ as small as we wish,
and the hypothesis of Corollary 3.17 are satisfied. We can thus solve Schrödinger’s
equation with V ∈ L2(Rd) if d ≤ 3.
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3. Linear evolution equations

c) Let d = 3 and consider the Hamiltonian for the electron in the Hydrogen atom

H = −∆ − α

|x|
(3.73)

with D(H) = H2(R3). The Coulomb potential can be written as

1
|x|

= 1(|x| ≤ 1)
|x|︸ ︷︷ ︸

∈L2(R3)

+ 1(|x| > 1)
|x|︸ ︷︷ ︸

∈L∞(R3)

. (3.74)

By example b) above,
H1 := −∆ − α

1(|x| ≤ 1)
|x|

(3.75)

is self-adjoint on H2(R3). By example a) above, after adding a bounded potential we
still have a self-adjoint operator with the same domain, so H is self-adjoint.

3.3.2. The heat equation
We will now apply the Hille Yosida theorem to the heat equation with variable coeffi-
cients. {

∂tu(t, x) = divM(x)∇u(t, x)
u(0, x) = u0(x)

(3.76)

This equation cannot be solved directly via the Fourier transform if the coefficient matrix
M is not constant. This matrix M models material properties of the medium through
which the heat is flowing, such as regions of better conductivity or different conductivity
depending on the direction.

Existence of solutions follows from Theorem 3.10 and Theorem 2.36.

Corollary 3.19. Let M ∈ C1(Rd,B(Cd)) be bounded with bounded derivatives and sat-
isfy for a > 0

∀v ∈ Cd, x ∈ Rd : ⟨v,M(x)v⟩ ≥ a∥v∥2. (3.77)

Let u0 ∈ H2(Rd). The equation{
∂tu = divM(x)∇u t ≥ 0

u(0, x) = u0(x)
(3.78)

has a unique solution

u ∈ C1
(
[0,∞), L2(Rd)

)
∩ C

(
[0,∞), H2(Rd)

)
. (3.79)

Proof. We need to show that the operator A = divM∇, D(A) = H2(Rd) satisfies the
hypothesis of Theorem 3.10, i.e. A is maximal dissipative. First, A is dissipative, since

⟨f, divM∇f⟩ = −
∫
Rd

⟨M(x)∇f(x),∇f(x)⟩dx ≤ −a
∫

|∇f(x)|2dx < 0. (3.80)
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3.3. Applications of the Hille-Yosida theorem

To show that A is maximal disspipative, we need to prove that A − 1 is onto. This
follows from Theorem 2.36, as this states that the equation

(λ−A)u = f (3.81)

has a unique solution u ∈ H2(Rd) = D(A) for all f ∈ L2(Rd).

While this first result is a direct corollary of the Hille-Yosida theorem, we can obtain
stronger statetements using more specific properties of the equation. The heat equation
belongs to the class of PDEs called parabolic. The most important feature of these is that
the solution is more regular at positive times than at t = 0, i.e., they are smoothing.
Apart from generalized (linear) heat equations the class of parabolic equations also
contains the non-linear Ricci flow that was used in Perelman’s proof of the Poincaré
conjecture. The smoothing property gives rise to a preferred direction of time and a
form of irreversible behaviour.

The abstract property giving rise to this behaviour is that the generator A, D(A) in
the Cauchy problem is

1. self-adjoint,

2. non-positive (dissipative).

Together, these imply that σ(A) ⊂ (−∞, 0]. If we want to solve the equation for negative
times, we can consider v(t) = u(−t) for t > 0. This would solve the equation

dv
dt (t) = −du

dt (−t) = −Av (3.82)

Note that if σ(A) is unbounded, then −A cannot satisfy the hypothesis of corollary 3.14
for any µ > 0. We thus cannot say that the evolution exists for negative times, which is
in accordance with the idea that the heat flow is irreversible.

The following theorem makes precise the smoothing for a abstract form of “heat equa-
tion”.

Proposition 3.20. Let A, D(A) be a self-adjoint and non-positive operator on H. Let
u0 ∈ H and define

u(t) := eAtu0 ∈ C([0,∞),H).

Then
u ∈ C((0,∞), D(A)) ∩ C1((0,∞),H) (3.83)

and u solves the equation (3.1) for t > 0.

Proof. The strategy is to assume first that u0 ∈ D(A) and to prove that

eAt : D(A) → C1([ε,∞),H) (3.84)

is bounded with respect to the norm of H for any ε > 0. Then we can again extend it
to H and by uniqueness of the extension this will prove the claim.
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Let u0 ∈ D(A) and u(t) = eAtu0. Let An be the Yosida approximants (3.20) and
un(t) := eAntu0 be the correspondign solutions to (3.29). Note that An is bounded and
self-adjoint. Recall that ∥eAnt∥ ≤ 1, so in particular

∥Anun(t)∥ = ∥eAn(t−s)Anun(s)∥ ≤ ∥Anun(s)∥ (3.85)

for any 0 ≤ s ≤ t. Consequently,∫ T

0
t∥Anun(t)∥2dt ≥ ∥Anun(T )∥2

∫ T

0
tdt = 1

2T
2∥Anun(T )∥2. (3.86)

Note that the right hand side is the object we want to control. On the other hand, by
self-adjointness of An, we have

d
dt⟨Anun, un⟩ = ⟨A2

nun, un⟩ + ⟨Anun, Anun⟩ = 2∥Anun∥2. (3.87)

After integration by parts, this gives∫ T

0
t∥Anun(t)∥2dt = 1

2

∫ T

0
t

d
dt⟨Anun(t), un(t)⟩dt

= T

2 ⟨Anun(T ), un(T )⟩ − 1
2

∫ T

0
⟨Anun(t), un(t)⟩dt

= 1
2T ⟨Anun(T ), un(T )⟩ − 1

4

(
∥un(T )∥2 − ∥u0∥2

)
≤ 1

2T∥Anun(T )∥∥u0∥ + 1
4∥u0∥2

≤ 1
4T

2∥Anun(T )∥2 + 1
2∥u0∥2. (3.88)

With (3.86) this gives

T∥dun
dt (T )∥ = T∥Anun(T )∥ ≤

√
2∥u0∥. (3.89)

As dun
dt → du

dt (see step 4 of the proof of Theorem 3.10) and Anun → Au (see step 5 of
the proof of Theorem 3.10), passing to the limit n → ∞ proves that

sup
t≥ε

∥Au(t)∥H ≤
√

2ε−1∥u0∥H (3.90)

sup
t≥ε

∥dun
dt (t)∥H ≤

√
2ε−1∥u0∥H, (3.91)

so ΦA has norm less than
√

2ε−1 as a map from D(A) ⊂ H to C([ε,∞), D(A)) and
C1([ε,∞),H). It thus extends to u ∈ H by the B.L.T. theorem, so by choosing ε = t/2 we
see that eAtu0 is differentiable at every t > 0 and the equation (3.1) holds by continuity
since it holds for the approximants.

Corollary 3.21. Let A = divM∇, D(A) = H2(Rd) be as in Corollary 3.19. Let
u0 ∈ L2(Rd), then u(t) = eAtu0 satisfies

u ∈ C((0,∞), H2(Rd)) ∩ C1((0,∞), L2(Rd))

and u solves the heat equation (3.76) for t > 0.
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Lemma 3.22. Let A, D(A) be self-adjoint on H and define

D(A2) := {f ∈ D(A) : Af ∈ D(A)}.

Then D(A2) is dense in D(A) with the graph norm as well as H and the operator B = A,
D(B) = D(A2) is self-adjoint on the Hilbert space D(A) with the scalar product

⟨f, g⟩D(A) := ⟨f, g⟩H + ⟨Af,Ag⟩H.

Proof. Let z ∈ ρ(A) (for example z = ±i) and f ∈ D(A). Then Rz(A)f ∈ D(A2) since

ARz(A)f = Rz(A)Af ∈ D(A). (3.92)

Since D(A) is dense in H and Rz(A) : H → D(A) is continuous and surjective, we
can thus approximate every element of g = Rz(A)f ∈ D(A) by Rz(A)fn ∈ D(A2), i.e,
D(A2) ⊂ D(A) is dense. As the inclusion of D(A) in H is dense and continuous we can
also approximate every f ∈ H in D(A2).

Obviously, B = A : D(A2) → D(A) is symmetric. Moreover, the map Rz(A) : D(A) →
D(A2) is the inverse of B − z, so in particular ±i ∈ ρ(B) and thus, by the criterion of
Theorem 2.49, B is self-adjoint.

In view of this lemma we iteratively define

D(Ak) = {f ∈ D(Ak−1) : Af ∈ D(Ak−1)}, (3.93)

and obtain that for ℓ < k, D(Ak) ⊂ D(Aℓ) is dense and the restriction of A to D(Ak) is
self adjoint on D(Ak−1), with the convention D(A0) = H.

Theorem 3.23. Let A, D(A) be a self-adjoint and dissipative operator on H. Let u0 ∈ H
and u be the solution to (3.1) given by Proposition 3.20. Then for all k ∈ N0

u ∈ C∞((0,∞), D(Ak)). (3.94)

Proof. Let t0 > 0. By Proposition 3.20, u(t0) ∈ D(A). We now consider the equation

dv
ds (s) = Bv t > 0

v(0) = u(t0).
(3.95)

on H = D(A), where B = A : D(A2) → D(A)) is the restriction of A to D(A2). By
Lemma 3.22, B is self-adjoint and since it restricts A it is also dissipative. We may
thus apply Proposition 3.20 to obtain a solution to this equation. Clearly, we have
v(t) = u(t0 + t) by uniqueness of the solution of 3.20. Thus, we have that

u ∈ C((t0,∞), D(A2)) ∩ C1((t0,∞), D(A)). (3.96)

Then du
dt = Au ∈ C1((t0,∞),H) and thus also

u ∈ C2((t0,∞),H), (3.97)
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for any t0 > 0. This shows that

u ∈ Cℓ((0,∞), D(Ak)) (3.98)

for k + ℓ ≤ 2. Iterating this argument yields the same for any k, ℓ ∈ N0, which proves
the claim.

Corollary 3.24. Let A = divM∇, D(A) = H2(Rd) be as in Corollary 3.19 and assume
additionally that M ∈ C∞(Rd,B(Cd)) with bounded derivatives. Let u0 ∈ L2(Rd), then
u(t) = etAu0 satisfies

u ∈ C∞((0,∞) × Rd)
and u is a classical solution to the heat equation (3.76) for t > 0.

Proof. In view of Theorem 3.23 it is sufficent to prove that Cℓ(Rd) ⊂ D(Ak) for some
k. This will follow from Sobolev’s Lemma once we prove that D(Ak) = H2k(Rd) in the
lemma below.

Lemma 3.25. Let A = divM∇, D(A) = H2(Rd) be as in Corollary 3.19 and assume
additionally that M ∈ C∞(Rd,B(Cd) with bounded derivatives. Then for k ∈ N

D(Ak) = H2k(Rd). (3.99)

Proof. Assume that f ∈ D(A2), that is, f ∈ D(A) = H2(Rd) and

(λ−A)f = g ∈ H2(Rd), (3.100)

for λ > 0. Then for all φ ∈ H2(Rd)

⟨g, φ⟩ = ⟨(λ−A)f, φ⟩ = λ⟨f, φ⟩ + ⟨M∇f,∇φ⟩, (3.101)

i.e., f is a weak solution to the equation λf − divM∇f = g. Now let j ∈ {1, . . . , d},
and consider

⟨M∇∂jf,∇φ⟩ = ⟨∂jM∇f,∇φ⟩ − ⟨(∂jM)∇f,∇φ⟩
= −⟨M∇f,∇∂jφ⟩ − ⟨(∂jM)∇f,∇φ⟩. (3.102)

Choosing φ ∈ H3(Rd) we can use the equation and obtain

λ⟨∂jf, φ⟩ + ⟨M∇∂jf,∇φ⟩ = − (λ⟨f, ∂jφ⟩ + ⟨M∇f,∇∂jφ⟩)︸ ︷︷ ︸
=⟨g,∂jφ⟩

−⟨(∂jM)∇f,∇φ⟩

= ⟨∂jg, φ⟩ + ⟨div(∂jM)∇f, φ⟩. (3.103)

Thus ∂jf is a weak solution to the equation

λu− divM∇u = ∂jg + div
(
(∂jM)∇f

)
∈ L2(Rd), (3.104)

where the right hand side is in L2 because g ∈ D(A) = H2 and f ∈ H2. By Theorem 2.36
we thus have ∂jf ∈ H2 and thus f ∈ H3(Rd).
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3.3. Applications of the Hille-Yosida theorem

To arrive at f ∈ H4(Rd) we consider the second derivatives. Let i, j ∈ {1, . . . , d}.
Then by the same argument as above, ∂ijf is a weak solution to

λu−divM∇u = ∂ijg+div
(
(∂ijM)∇f

)
+div

(
(∂iM)∇∂jf

)
+div

(
(∂jM)∇∂if

)
. (3.105)

The right hand side is in L2 since f ∈ H3 and the derivatives of M are bounded. Hence
again by Theorem 2.36 we have ∂ijf ∈ H2(Rd) and thus f ∈ H4(Rd).

It remains to prove the claim for k > 2. We proceed by induction, so assume that
D(Ak−1) = H2k−2(Rd) holds for k ≤ ℓ. For f ∈ D(Aℓ) ⊂ D(Aℓ−1) we then know that
f ∈ H2ℓ−2(Rd). Consequently, the expression divM∇ acting on ∂jf equals the operator
A, and we have

(λ−A)∂jf = ∂jg + div
(
(∂jM)∇f

)
∈ H2ℓ−4 = D(Aℓ−2). (3.106)

From this we conclude that ∂jf ∈ D(Aℓ−1) = H2ℓ−2 and thus f ∈ H2ℓ−1(Rd). The same
reasoning for ∂ijf then shows that

(λ−A)∂ij = ∂ijg + div
(
(∂ijM)∇f

)
+ div

(
(∂iM)∇∂jf

)
+ div

(
(∂jM)∇∂if

)
, (3.107)

where the right hand side is an element of H2ℓ−1−3 = D(Aℓ−2). We thus have ∂ij ∈
D(Aℓ−1) = H2ℓ−2 and f ∈ H2ℓ(Rd). This completes the proof.

3.3.3. Inhomogeneous and time-dependent equations
A natural variation of the equation

d
dtu = Au (3.108)

is the inhomogeneous equaition with a time-depenent source term

d
dtu = Au+ f(t). (3.109)

For example, in the heat equation f could model the heat flow to another system.
In the finite dimensional setting, we know that the solution to this equation is given

“variation of constants”, or Duhamel’s formula

u(t) = eAtu0 +
∫ t

0
e(t−s)Af(s)ds. (3.110)

We will now prove that this is also the case in our setting, and that this equation has a
unique soltution under appropriate hypothesis on f .

Lemma 3.26. Let A,D(A) be maximal dissipative and f ∈ C(R+,H). Assume that
u0 ∈ D(A) and u ∈ C1(R+,H) ∩ C(R+, D(A)) is a solution to (3.109). Then u solves
the integral equation (3.110).
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3. Linear evolution equations

Proof. Consider eA(t−s)u(s). This is differentiable in s since eA(t−s)u(r) is continuously
differentiable in r, s for u ∈ C1(R+,H) ∩C(R+, D(A)). Calculating the derivative (with
the chain rule) yields

d
dseA(t−s)u(s) = eA(t−s)(−A)u(s) + eA(t−s)(Au(s) + f(s)) = eA(t−s)f(s). (3.111)

Integrating this equation gives

u(t) − eAtu0 =
∫ t

0
eA(t−s)f(s)ds, (3.112)

as claimed.

Proposition 3.27. Let u0 ∈ D(A), f ∈ C1(R+,H) and define u ∈ C(R+,H) by the
variation of constants formula (3.110). Then u ∈ C1(R+,H)∩C(R+, D(A)) and u solves
the inhomogeneous equation (3.109).

Proof. The fact that eAtu0 ∈ C1(R+,H) ∩C(R+, D(A)) is part of the Hille-Yosida The-
orem, so it remains to prove the same for∫ t

0
eA(t−s)f(s)ds. (3.113)

The problem is that we do not have f ∈ D(A), so eA(t−s)f(s) is not necessarily differen-
tiable in t. The basic idea to solve this is to use the integral and integrate by parts, to
put the derivative on f , but this needs to be properly justified. First, we write∫ t

0
eA(t−s)f(s)ds =

∫ t

0
eAsf(t− s)ds, (3.114)

which is an element of C1(R+,H), with derivative

d
dt

∫ t

0
eA(t−s)f(s)ds = eAtf(0) +

∫ t

0
eAsf ′(t− s)ds. (3.115)

On the other hand,∫ t

0
eA(t−s)f(s)ds =

∫ t

0
eA(t−s)

(
f(0) +

∫ s

0
f ′(r)dr

)
ds

=
∫ t

0
eA(t−s)f(0) +

∫ t

0

∫ t

r
eA(t−s)f ′(r)dsdr. (3.116)

Now we claim that for any g ∈ H, r ≥ 0∫ t

r
eAsgds ∈ D(A). (3.117)

To see this, calculate for g ∈ D(A)

A

∫ t

r
eAsgds =

∫ t

r

( d
dseAs

)
gds = eAtg − eArg. (3.118)
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3.3. Applications of the Hille-Yosida theorem

Now the right hand side is clearly continuous a continuous function of g in H, so (3.117)
holds because A is closed. We thus have that (3.116) is an element of C(R+, D(A)).
Moreover, we have

A

∫ t

0
eA(t−s)f(s)ds = (eAt − 1)f(0) +

∫ t

0
(eA(t−r) − 1)f ′(r)dr

= −f(t) + eAtf(0) +
∫ t

0
eA(t−r)f ′(r)dr (3.119)

= d
dt

∫ t

0
eA(t−s)f(s)ds− f(t). (3.120)

This proves the claim.

The formula (3.110) is used as a starting point for the solution to many more com-
plicated equations, like non-linear equations. For example, consider an equaiton of the
form

d
dtu = Au+ F (t, u). (3.121)

For example, we could have F (u) = −i|u|2u (non-linear Schrödinger equation), or F (u) =
B(t)u (time-dependent linear equation). Given a solution, we can set f(t) = F (t, u(t)),
so the formula (3.110) will hold. Writing this formula for an arbitary u given an integral
equation for u, and one can try to solve this, for example using Banach’s fixed point
theorem. A solution of this equation is called a mild solution of the differential equation.
The task would then be to show that this solution is differentiable and actually solves
the differential equation, i.e., it is a strong solution.
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A. Problems
Problem 1. Use the Fourier transform to find a solution to the equation{

∂tu(t, x) − ∂xu(t, x) = 0
u(0, x) = u0(x).

with u0 ∈ S (R).

Problem 2 (The Fourier transform of complex Gaussians).

a) Let a ∈ C with Re(a) > 0. Show that∫ ∞

−∞
e−ax2dx =

√
π

a
.

b) Calculate the Fourier transform of f(x) = e−ax2 for Re(a) > 0.
Hint: Use Cauchy’s theorem from complex analysis.

Problem 3 (The free Schrödinger equation). In this exercise we show that the free
Schrödinger equation in one dimension

i∂tu(t, x) = −1
2∂

2
xu(t, x)

is solved for t > 0 by
u(t, x) = 1√

2πit

∫ ∞

−∞
ei (x−y)2

2t u0(y)dy,

for any u0 ∈ S (R).

a) Show that for (t, x) ∈ (0,∞) × R, u(t, x) is continuously differentiable in t and twice
continuously differentiable in x.

b) Show that u(t, x) solves the Schrödinger equation for (t, x) ∈ (0,∞) × R.

Problem 4 (Multiplication and convolution on S ′). Let g ∈ S (Rd) and define the
multiplication by g as a map (Mgf)(x) := g(x)f(x).

a) Show that M ′
g : S ′(Rd) → S ′(Rd) is linear and continuous;

b) For φ ∈ S ′(Rd) define multiplication with g by gφ := M ′
gφ and show that

F (gφ) = (2π)−d/2ĝ ∗ φ̂,

where ∗ is the convolution of ĝ ∈ S (Rd) with φ̂ ∈ S ′(Rd) defined in the lecture.
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Problem 5. Set for f ∈ S (R)
δ′(f) = df

dx (0).

Show that δ′ defines a tempered distribution.

Problem 6 (The Fourier transform of complex Gaussians II). Let t > 0 and set for
ε ≥ 0

fε(x) := e−(it+ε)x2/2.

a) Show that fε → f0 in S ′(R) as ε → 0;

b) Show that

f̂0(p) = ei p2
2t

√
it
.

Can you explain the relation to Problem 3?

Hint: We know from Problem 2 that for ε > 0

f̂ε(p) = e− p2
2(it+ε)

√
it+ ε

.

Problem 7 (The delta-distribution). Define for f ∈ S (Rd)

δ0(f) := f(0).

Let g ∈ L1(Rd) with
∫
Rd g = 1 and define, for ϵ > 0, gϵ(x) := ϵ−dg(ϵ−1x). Then for every

ϵ > 0, φϵ = φgϵ is a regular distribution.

a) Show that φϵ → δ0 in S ′(Rd), as ϵ → 0;

b) Let θ ∈ S ′(R) be defined by θ(f) :=
∫
R 1[0,∞)(x)f(x)dx. Prove that d

dxθ = δ0. (Here
d

dx := (∂1)S ′ is the distributional derivative as defined in the lecture).

c) Prove that δ0 is not a regular distribution.

Problem 8. Prove Proposition 2.5 from the lecture: Let ∥ · ∥1, ∥ · ∥2 be two equivalent
norms on a vector sapce X, then U ⊂ X is open for ∥ · ∥1 if and only if it is open for
∥ · ∥2.

Problem 9. Let X be a normed space and S ⊂ X. A point x ∈ X is called a limit
point of S if there exists a sequence in xn ∈ S, n ∈ N that converges to x. Prove that

a) S is closed if and only if it contains all its limit points;

b) The closure S is the union of S and its limit points;

c) Assume that X is complete and Y ⊂ X a subspace. Then Y is complete if and only
if Y is closed.
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A. Problems

Problem 10 (Green’s function for the Laplacian).

a) Let g : R → R be the function given by g(x) = 1
2e−|x|. Show that g (more precisely

the associated distribution, φg) is the unique solution in S ′(R) to the equation

(1 − ∆)φ = δ0 ,

by
1) the Fourier transform;
2) directly using the distributional derivative.

b) Prove that for f ∈ S (R) the unique solution to the equation

(1 − ∆)u = f

is
u(x) =

∫
g(x− y)f(y)dy.

Remark: g is called the fundamental solution or Green’s function for the equation.

Problem 11. Let k ∈ N0, f ∈ Hk(Rd) and g ∈ S (Rd). Prove that fg ∈ Hk(Rd) and
the generalised Leibniz rule holds for the derivatives of order |α| ≤ k.

Problem 12. Let H be a Hilbert space, and S ⊂ H a subset.

a) Show that span(S) = (S⊥)⊥;

b) Deduce that
span(S) = H ⇔ S⊥ = {0};

c) Prove that S (Rd) is dense in Hs(Rd) for all s ∈ R.

Hint: You may use from Fourier Analysis that S (Rd) is dense in L2(Rd).

Problem 13. Prove that if X is a normed space and Y a Banach space, then B(X,Y )
is complete, i.e., a Banach space.

Problem 14. Let H be a Hilbert space, (fn)n∈N be a sequence in H and f ∈ H. Prove
that the following are equivalent as n → ∞:

(i) fn → f in norm.

(ii) fn ⇀ f weakly in H and ∥fn∥ → ∥f∥ as real numbers.

Problem 15. Let H be a Hilbert space, f ∈ H and define a linear functional by

Φ(f) : H → C , g 7→ ⟨f, g⟩.

Show that
∥Φ(f)∥ = ∥f∥.
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Problem 16. The adjoint has the following properties for A,B ∈ B(H) and z ∈ C

a) (A+ zB)∗ = A∗ + zB∗;

b) (AB)∗ = B∗A∗;

c) (A∗)∗ = A

d) kerA∗ = (ranA)⊥ and kerA = (ranA∗)⊥.

Problem 17 ((The Lax-Milgram Theorem)). Let H be a Hilbert space and

α : H × H → C

a sesquilinear form. Asssume that

• α is bounded: there exists C > 0 so that for all f, g ∈ H

|α(f, g)| ≤ C∥f∥∥g∥;

• α is coercive: there exists a > 0 so that for all f ∈ H

α(f, f) ≥ a∥f∥2.

Prove that:

a) There exists A ∈ B(H) so that α(f, g) = ⟨Af, g⟩;

b) A is bijective with bounded inverse satisfying ∥A−1∥ ≤ a−1;

c) g = A−1f is the unique minimiser of

g 7→ α(g, g) − 2Re⟨f, g⟩.

Problem 18. Let H be a complex Hilbert space and A ∈ B(H). Show that A is
self-adjoint if and only if for all f ∈ H

⟨f,Af⟩ ∈ R.

Problem 19. Let, for t > 0, Tt ∈ B(L2(R)) be the solution map of the heat equation
on L2(R),

(Ttf)(x) = 1√
4πt

∫
R

e−|x−y|2/(4t)f(y)dy.

Show that for all f ∈ H, t > 0 we have ∥Ttf∥ < ∥f∥, and ∥Tt∥ = 1.

Problem 20. Let V ∈ L∞(Rd,R) be bounded from below, i.e. V (x) ≥ −M for some
M ≥ 0 and a.e. x ∈ Rd.
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A. Problems

a) Prove that for every f ∈ L2(Rd) and λ > M there exists a unique u ∈ H1(Rd) such
that

∀φ ∈ H1(Rd) : ⟨∇u,∇φ⟩ + ⟨(V + λ)u, φ⟩ = ⟨f, φ⟩,

that is, there is a unique weak solution to the equation

−∆u(x) + V (x)u(x) + λu(x) = f(x).

b) Prove that the weak solution u ∈ H1(Rd) obtained in part a) is an element of H2(Rd).

Problem 21. Let A ∈ B(H) and show that σ(A) is compact.

Problem 22. Let A, D(A) be densely defined. Show that if ρ(A) ̸= ∅, then A is closed.
Hint: Consider the set

{(f, g) ∈ H × H : (g, f) ∈ G (A)}.

Problem 23. For a (possibly unbounded) measurable function g : Rd → C consider the
linear map Mg in L2(Rd) defined by

D(Mg) :=
{
f ∈ L2(Rd)

∣∣ gf ∈ L2(Rd)
}

(Mgf)(x) := g(x)f(x) .

Prove:

a) D(Mg) is dense in L2(Rd).

b) (Mg)∗ = Mg.

c) Mg is closed.

d) If g ∈ L∞(Rd) then Mg is bounded, and

∥Mg∥ = ∥g∥∞ = sup
{
t :
∣∣{x ∈ Rd : |g(x)| ≥ t}

∣∣ > 0
}
,

where |V | denotes the Lebesgue measure of a measurable subset V ⊂ Rd.

e) Mg is not bounded if g /∈ L∞(Rd).

Problem 24. Let A ∈ B(Cd) = Cd×d and consider the linear autonomous ODE

du
dt = Au(t).

Show that
lim sup

t→∞
|u(t)| < ∞

holds for all solutions if and only if all eigenvalues of A have non-positive real part and
the purely imaginary eigenvalues have equal algebraic and geometric multiplicity.

Give examples where the solution exhibits exponential/polynomial growth.
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Problem 25. Let H = L2(R), a ∈ C1(R,R) and A be the operator

(Af) = a′(x)f(x) + 2a(x)f ′(x)

with domain D(A) = C∞
0 (R). Show that A is dissipative. Is A maximal dissipative?

Problem 26 (The spectrum of a multiplication operator). Let g : R → C be measur-
able, Mg the operator of multiplication with g from Exercise 7.2 and denote by |B| the
Lebesgue measure of B ∈ B(R). Show that

a) σ(Mg) = essran g =
{
z ∈ C | ∀ε > 0 :

∣∣∣{x ∈ R | |z−g(x)| < ε}
∣∣∣ > 0

}
;

b) z ∈ C is an eigenvalue of Mg if and only if∣∣g−1({z})
∣∣ =

∣∣{x ∈ R : g(x) = z}
∣∣ > 0;

c) Let g(x) := x ∀x ∈ R. Then the quantum mechanical position operator q := Mg is
self-adjoint, has no eigenvalues, and σ(q) = R.

Problem 27 (Dissipative matrices). Let d ∈ N and A ∈ B(Cd) be a d× d matrix.

a) Assume there exists a unitary U ∈ B(Cd) so that UAU∗ is diagonal and give a
necessary and sufficient condition on σ(A) for A to be dissipative.

b) Let d = 2 and A be the non-trivial Jordan block

A =
(
λ 1
0 λ

)
.

Give a necessary and sufficient condition on λ ∈ C for A to be dissipative.

c) Let A be as in part b) and Reλ < 0. Show that there exists a matrix S such that
B = SAS−1 is dissipative.

Problem 28. Let A be maximal dissipative and λ > 0. Prove that

∥ARλ(A)∥ ≤ 1.

Problem 29 (The wave equation). In this exercise we solve the wave equation on Rd

using the Hille Yosida theorem. The wave equation is
∂2

t u− ∆u = 0
u(0) = u0

∂tu(0) = u̇0.

(W)
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A. Problems

a) Let H = H1(Rd) ⊕ L2(Rd) and let A be the operator

A =
(

0 1
∆ 0

)

with domain D(A) = H2(Rd) ⊕H1(Rd). Show that if (u, v) ∈ C1(R,H) is a solution
to the Cauchy problem { d

dt(u, v) = A(u, v)
(u, v)(0) = (u0, v0)

(A)

then u solves the wave equation (W).

b) Show that (u, v) solves (A) if and only if (ũ, ṽ) = e−t(u, v) solves{ d
dt(ũ, ṽ) = (A− 1)(ũ, ṽ)

(ũ, ṽ)(0) = (u0, v0).

c) Show that A− 1 is maximal dissipative.

d) State the existence and uniqueness result for the wave equation implied by a)–c) and
the Hille-Yosida theorem, specifying the functional space for the solution u.

Problem 30. Let A = d
dx with D(A) = H1(R).

a) Show that A is maximal dissipative.

b) Show that for u0 ∈ L2(R)
(eAtu0)(x) = u0(x+ t).

c) Determine the spectrum of T (t) = etA and its decomposition into σp, σc, σr.

Problem 31. Let a ∈ C1(R,R) satisfy a(x) ≥ 1 for all x ∈ R and a, da
dx ∈ L∞(R). Prove

that for u0 ∈ H2(R) the Cauchy problem{
∂tu(t, x) = ∂xa(x)∂xu(t, x) + ∂xu(t, x)

u(0) = u0

admits a unique solution

u ∈ C1([0,∞), L2(R)) ∩ C0([0,∞), H2(R)).

Problem 32. We set for f ∈ S (R)

p.v.
(1
x

)
(f) := lim

ε→0

∫ ε

−∞

f(x)
x

dx+
∫ ∞

ε

f(x)
x

dx.

a) Show that p.v.
(

1
x

)
is a well-defined tempered distribution.
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b) Show that p.v.
(

1
x

)
extends to a continuous linear functional on H2(Rd).

Problem 33. Let H be a Hilbert space, A, D(A) ⊂ H be maximal dissipative and B a
closed linear operator with D(A) ⊂ D(B). Denote by a ∈ [0,∞) the relative A-bound
of B, i.e.,

a := inf
{
δ > 0

∣∣∣∃C > 0 so that ∀f ∈ D(A) : ∥Bf∥H ≤ δ∥Af∥H + C∥f∥H
}
.

Prove that
lim sup

λ→∞
∥BRλ(A)∥B(H) = a.
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B. Notation

Symbol Explanation Page

N Natural numbers (not including zero!)
N0 N ∪ {0}
D Differential of a vector-valued function
grad Gradient of a scalar function, grad f = Df

div Divergence of a vector field, div v = Tr(Dv)
B(x, r) Open ball of radius r around x 16
S (Rd) Space of Schwartz functions on Rd 5
S ′(Rd) Space of tempered distributions on Rd 7
Hk(Rd) Sobolev space of functions in L2(Rd) with k weak derivatives in L2 11
X Usually a complex Banach space 17
B(X,Y ) Banach space of bounded linear operators from X to Y 23
B(X) Banach space of bounded linear operators from X to X 23
X ′ Space of continuous linear functionals on X (=B(X,C)) 23
H Complex (separable) Hilbert space 18
A,D(A) Densely defined linear operator 29
G (A) Graph of A 29
A Closure of (A,D(A)) 29
∥·∥D(A) Graph norm on D(A) 30
A∗ (Hilbert-) adjoint of (A,D(A)) 24,31
ker(A) Kernel of A
ran(A) Range of A
ρ(A) Resolvent set of A 34
Rz(A) Resolvent of A in z ∈ ρ(A), (A− z)−1 34
σ(A) Spectrum of A 34
Ck(U) Space of k-times continuously differentiable functions U → C
Ck

0 (U) Space of k-times continuously differentiable functions U → C with
compact support, supp f ⋐ U
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